
Episerver

Episerver CMS

Development
Fundamentals
May 2018
Product version: Update 214
Course version: 18.05

Episerver

Course title: Episerver CMS – Development Fundamentals Course code: 170-3020

Course version: 18.05, 17th May 2018 Product Update 214, 14th May 2018

Episerver CMS Visual Studio Extension version: 11.3.0.359

Episerver CMS packages: EPiServer.CMS.Core 11.7.0, EPiServer.CMS.UI 11.4.4

http://world.episerver.com/releases/

Copyright © Episerver AB. All rights reserved.
Without limiting the rights under copyright, no part of this document may be reproduced, stored in or

introduced into a retrieval system or transmitted in any form or by any means (electronic, mechanical,

photocopying, recording, or otherwise), or for any purpose, without expressed written permission of Episerver

AB. We assume no liability or responsibility for any errors or omissions in the content of this document.

Episerver is a registered trademark of Episerver AB.

Episerver

Introduction

Episerver CMS – Development Fundamentals

In this course, we cover the fundamental development
concepts and skills that are needed to develop for the

Episerver CMS platform.

Prerequisites are experience with Microsoft Visual Studio 2015 or later, ASP.NET MVC, and web front end

technologies.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 6

Episerver

Introduction – About the course

8

Commerce Developer

Boot Camp (5 days)

Course tracks for developers

CMS Development

Fundamentals (3 days)

CMS Advanced

Development (3 days)

Commerce Development

Fundamentals (3 days)

Commerce Advanced

Development (3 days)CMS Developer

Boot Camp (5 days)

Find for

Developers (1 day)

Developing for

DXC Service (1 day)

CMS Development

Fundamentals (3 days)

CMS & Commerce

Fundamentals (5 days)

Commerce Development

Fundamentals (3 days)

http://www.episerver.com/services/education/services-education-courses/developers/

CMS Masterclass

+ exam (2 days)

Episerver CMS – Development Fundamentals

This step-by-step guide-style training course focuses on developing core functionality for Episerver CMS

solutions, including defining custom content types and templates, handling media, reusing shared content,

implementing navigation and indexed search, and optimizing, securing, and deploying websites, both on-

premise and in the cloud.

Episerver CMS – Advanced Development

This cookbook-style training course is a deep dive into development with Episerver CMS with focus on

reviewing the fundamentals and then customizing and extending the Episerver platform following

recommended good practice. You will learn how to use APIs for taking control of content approvals, user

notifications, and key performance indicators, you will integrate data with partial routers and a combination

of scheduled jobs and system-level content events, and you will integrate Episerver Find and Episerver

Social microservices to build advanced features into your websites.

Episerver CMS – Developer Boot Camp

Get up to speed with Episerver CMS development – fast! Join our Developer Boot Camp and get set to both

take on real world projects with Episerver CMS and prepare to test your competence with the Episerver

Certified Developer for Episerver CMS 11 exam. This course includes all the content from our Development

Fundamentals and Advanced Development training courses in an accelerated format.

Episerver Commerce – Development Fundamentals

Learn how to work with the different parts of Episerver Commerce and after the course you should be able

to build your first e-commerce solution from scratch.

Episerver Commerce – Advanced Development

Get the knowledge and understanding of how to work with our Commerce platform and API. The course

highlights many abilities of the platform for being able to create a feature rich and automated website built

with Episerver Commerce.

Developing for DXC Service

Learn how to successfully develop Episerver solutions for the cloud, taking into account development,

deployment, and security considerations, so that you avoid the common traps and have a smooth

productive experience with Episerver’s DXC Service.

Episerver Find for Developers

Learn all about the magic behind Episerver Find. With this course you will get the skills necessary to build a

powerful search function, including automatic landing pages and dynamic navigation.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 8

Episerver

Course agenda

9

Introduction – About the course

• Introduction

• Module A: Getting Started with Episerver CMS

• Module B: Defining Content Types

• Module C: Rendering Content Templates

• Module D: Working with Blocks

• Module E: Navigating Content

• Module F: Working with Episerver Framework

• Module G: Optimizing, Securing, and Deploying

• Course Summary

Module A: Getting Started with Episerver CMS

In this module, you will have a walkthrough of the Episerver user interface for Content Editors, Marketers, and

Administrators, learn how to install the product and how to setup your development environment, and finally

create a minimal Episerver website.

Module B: Defining Content Types

In this module, you will learn how to define content types with properties, and how to render them with

content templates. You will learn about the important attributes that control how a content type and its

properties are registered with Episerver CMS.

Module C: Rendering Content Templates

In this module, you will learn about content areas, display channels, display options, and tags for selecting

between multiple templates for a content type.

Module D: Working with Blocks

In this module, you will learn about the two uses of blocks: as an item of shared content and as a property

type.

Module E: Navigating Content

In this module, you will learn how to create content listings and menus using IContentLoader and common

filters, and you will learn how to work with the built-in search for Episerver CMS.

Module F: Working with Episerver Framework

In this module, you will learn about the Episerver architecture and framework, know the various important

classes and abstractions.

Module G: Optimizing, Securing, and Deploying

In this module, you will learn about deployment options and tools, and how to secure and optimize an

Episerver website.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 9

Episerver

Course exercises and their dependencies

Introduction – About the course

Module A exercises start with the Alloy (MVC) reference site to demonstrate features for Editors and

Administrators. Module B and later exercises build up a complete Episerver CMS website starting from

the Empty project template. Modules F and G exercises return to using the Alloy (MVC) site.

You must complete some earlier exercises in order to complete later exercises.

11

A1

A2 – A4

A5 – A6

F1 – F5

G1 – G3

B1 – B4

C1 – C4

C5

D1 – D4

D5

E1 – E3

E4 – E5

Starts with Empty

template

Starts with Alloy (MVC)

template

Recommendation

If you copy and paste solutions, then do so from

the exercise files ZIP rather than from the exercise

book PDF to avoid broken lines due to formatting.

Modules A, F, and G use the Alloy (MVC) project template.

Alloy (MVC) is a website for a fictional company named Alloy that shows many Episerver CMS features and is

implemented following Episerver good practices. But it is not designed as an example of a massively scalable

website.

The Alloy (MVC) project template makes use of built-in functionality like categories, personalization, and

blocks to illustrate some possibilities when implementing dynamic websites with Episerver CMS. Use Alloy

(MVC) to inspire and guide you to success with your own custom websites.

Modules B to E use the Empty project template. This provides a minimum set up for an Episerver website, but

does not include any content type or templates, so visitors will see a 404 Missing resource error, but CMS

Editors and CMS Admins can manually enter /EPiServer/CMS/ to log in to the Episerver CMS user interface.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 11

Episerver

Software requirements

• Microsoft Visual Studio 2015 or

2017 (with latest updates)

• Episerver CMS Visual Studio

Extension 11.3.0.359 or later

(includes Episerver CMS 11.5.4)

Links to older CMS extension

versions:

http://world.episerver.com/download/Items/

Episerver-CMS/visual-studio-cms-extensions/

Introduction – About the course

12

If you are using an Episerver virtual machine, it will have:

• Microsoft Windows 10 Enterprise with IIS

• Microsoft Visual Studio 2017

• Microsoft SQL Server Management Studio and SQL Server LocalDb

• Microsoft Azure SDK

• Microsoft Edge, Internet Explorer 11, Firefox, Chrome

If you would like to use your own PC, use the following guide, available as a PDF:

• Setting Up Episerver Sites for Training

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 12

Episerver

Knowing where to get help

Episerver World is where you go to read the

documentation for CMS developers:

• http://world.episerver.com/cms

Ask questions and make feature requests

in the forums:

• http://world.episerver.com/forum

• http://world.episerver.com/forum/developer-forum/Feature-requests/

Raise a support ticket and view answers in knowledge base:

• http://world.episerver.com/support

You can find a list of fixed bugs and new features about a

specific release:

• http://world.episerver.com/releases and

http://world.episerver.com/documentation/Release-Notes/

Introduction – Getting more information

15

CMS 11.1 or later requires

• Commerce 11.5 or later

• A/B testing 2.5 or later

• Forms 4.9 or later

• Find 12.7 or later

• Social Reach 2.3 or later

• Google Analytics 2.0 or later

• Languages 3.1 or later

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 15

Episerver

Episerver product team blogs

16

The Cloud Team blog
http://world.episerver.com/product-blogs/the-cloud-blog/

The CMS Team blog
http://world.episerver.com/product-blogs/the-cms-blog/

The Commerce Team blog
http://world.episerver.com/product-blogs/the-commerce-blog/

The Find Team blog
http://world.episerver.com/product-blogs/the-find-blog/

The Campaign Team blog
http://world.episerver.com/product-blogs/the-campaign-blog/

The Social Team blog
http://world.episerver.com/product-blogs/the-social-blog/

The Personalization Team blog
http://world.episerver.com/product-blogs/the-personalization-blog/

Introduction – Getting more information

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 16

Episerver

CMS documentation http://world.episerver.com/documentation/developer-guides/CMS/

Introduction – Getting more information

17

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 17

Episerver

Demonstration sites and open source solutions

Introduction – Getting more information

We have a set of public demo sites available demonstrating possibilities with the Episerver platform.

• Feel free to explore and use any of these sample websites.

• Demo sites are refreshed and reset on a daily basis.

• You'll find links to presentations about the demo sites with scenarios and logins.

http://world.episerver.com/download/demo-sites/

The following link has a version of the Alloy reference site containing additional features for demoing

purposes: https://github.com/episerver/AlloyDemoKit

Episerver on GitHub: http://www.github.com/episerver/

18

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 18

Episerver

Feature videos

For editors and administrators:

http://webhelp.episerver.com/latest/_online-only-

topics/videos.htm

For developers:

http://world.episerver.com/documentation/videos/

Introduction – Getting more information

19

Episerver on YouTube

https://www.youtube.com/user/EpiserverAB

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 19

Episerver

Partners and EMVPs with useful blogs about Episerver

Introduction – Getting more information

• Ted & Gustaf: Episerver Premium Partner. https://tedgustaf.com/blog/

• Alf Nilsson talks: Babble about EPiServer, and other development. https://talk.alfnilsson.se/

• David Knipe: former EMVP, now Principal Solution Architect, Episerver UK. https://www.david-tec.com/

• Deane Barker: Chief Strategy Officer, founding partner at Blend Interactive. http://gadgetopia.com/

• Fredrik Haglund: independent consultant and Episerver trainer. http://blog.fredrikhaglund.se/

• Aria Zanganeh: software developer who is passion about technology. http://azanganeh.com/

• Māris Krivtežs: EPiServer and front-end development at Geta. http://marisks.net/

• Wałdis Iljuczonok: http://blog.tech-fellow.net/

• Episerver Fellow: http://fellow.aagaardrasmussen.dk/

• Jon D. Jones: UK consultant who regularly blogs about CMSes. http://jondjones.com/

20

If you do not have a background with Web Content Management Systems (WCM/CMS), then we recommend

this book. It is not specific to Episerver.

https://www.amazon.co.uk/Web-Content-Management-Features-Practices/dp/1491908122/

Deane Barker is an Episerver Most Valued Professional (EMVP): http://world.episerver.com/emvp/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 20

Episerver

Grzegorz Wiecheć

21

One of the best Episerver developers on the planet… and he shares his skills by

blogging articles about how to customize and extend Episerver products.

• Hide tabs and properties in edit mode https://gregwiechec.com/2018/03/hide-tabs-and-properties-in-edit-mode/

• Converting pages in edit mode https://gregwiechec.com/2018/02/converting-pages-in-edit-mode/

• Switch button property https://gregwiechec.com/2018/01/switch-button-property/

• Icons in Edit Mode Tabs https://gregwiechec.com/2018/01/icons-in-edit-mode-tabs/

• Additional header properties https://gregwiechec.com/2018/01/additional-header-properties/

• Content ChildrenGrid View https://gregwiechec.com/2017/11/content-childrengrid-view/

• How to turn off autopublish in ContentArea https://gregwiechec.com/2017/07/how-to-turn-off-autopublish-in-

contentarea/

• Deleting single file from trash https://gregwiechec.com/2016/06/deleting-single-file-from-trash/

Introduction – Getting more information

Deleting single file from trash

Content ChildrenGrid View

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 21

Episerver

Troubleshooting tips for Visual Studio

Try closing and re-opening views (.cshtml)

Sometimes Visual Studio mistakenly shows errors in views even after the error has been fixed.

Try closing and re-starting Visual Studio

Sometimes Visual Studio gets confused. Exiting and re-starting sometimes fixes it.

Disable ASP.NET’s optimized compilations

If you get ASP.NET dynamic compilation errors, disable optimizeCompilations in the root Web.config:

Once it’s working again, reset back to true for faster performance. ☺

Introduction – Getting more information

<system.web>
<compilation debug="true" targetFramework="4.6.1" optimizeCompilations="false" />

22

Disable Visual Studio’s Browser Link

If the browser seems to hang while drawing the Episerver UI, it may be Visual Studio’s Browser Link feature

interfering with our Dojo library: disable Browser Link to prevent the JavaScript error.

Reset IIS or IIS Express

Use the iisreset command line to stop and restart IIS or use the Taskbar tray icon for IIS Express, as shown

in the following screenshot:

Empty ASP.NET Temporary Files folder

By default, the dynamic compilation of views stores the assemblies (*.dll) in a temporary folder. Stop the site,

shut down Visual Studio, and clear the folder sometimes fixes issues.

Disable Web Sockets on Windows 7 (to hide error messages about no real-time communication)

http://world.episerver.com/documentation/developer-guides/CMS/user-interface/websocket-support/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 22

<add key="Epi.WebSockets.Enabled" value="false" />

Episerver

Module A

Getting Started with
Episerver CMS

Episerver CMS – Development Fundamentals

In this module, you will have a walkthrough of the Episerver user
interface for Editors, Marketers, and Administrators, learn how to
install the product, setup your development environment, create

an example Episerver website, and manage security,
personalization, and localization.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 23

Episerver

Module agenda

• Overview

• Installing and updating

• Breaking changes

• Visual Studio Extension

• Exercise A1 – Episerver CMS –

Installing and updating

• Working areas

• Edit view and Admin view

• Authentication and authorization

• Access rights

• Exercise A2 – Authentication

and authorization

Module A – Getting Started with Episerver CMS

24

• Editing content

• Content versions

• Multi-user editing

• Publishing content

• Media assets

• Rich text and images

• Forms

• Reusing content

• Exercise A3 – Editing

content

• Personalizing content

• User Profiles, Visitor Groups, and smart

content

• Managing content

• Projects

• Content approvals

• A/B testing

• Exercise A4 – Managing content

• Internationalization

• Localizing content

• Localizing content types

• Exercise A5 – Internationalization

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 24

Episerver

Why use a CMS?

What are the benefits of using a Content Management System?

Why not just build a site with Microsoft ASP.NET MVC?

1. Easy for non-technical people to create professional well-structured content.

2. Flexible access control lists for applying permissions to content.

3. Localize content into multiple human languages.

4. Control publishing workflow and multiple versions.

Developers should know about CMS features for

editors and administrators, so read the User Guides:
http://world.episerver.com/documentation/Items/user-guides/

Module A – Getting Started with Episerver CMS – Overview

26

Quick Demonstration

• Visitor navigates Alloy products and searches for ‘team’.

• Editor changes Alloy product name and main body.

• Admin runs scheduled job and assigns access rights.

Homework, Learn basic editing
http://world.episerver.com/documentation/developer-guides/CMS/getting-started/learn-basic-editing/

Links to Developer Guide and User Guide topics for Module A:

• Installing and updating: http://world.episerver.com/documentation/developer-guides/CMS/getting-

started/

• Visual Studio Extension: http://world.episerver.com/documentation/Items/Installation-

Instructions/installing-episerver/

• Working areas: http://webhelp.episerver.com/latest/getting-started/user-interface.htm

• Authentication and authorization: Access rights: http://webhelp.episerver.com/latest/cms-admin/access-

rights.htm

• Editing content: Media assets: http://webhelp.episerver.com/latest/platform/media.htm

• Editing content: Rich text and images: http://webhelp.episerver.com/latest/cms-edit/editing-content.htm

• Editing content: Forms: http://webhelp.episerver.com/latest/cms-edit/working-with-web-forms.htm

• Editing content: Personalizing content: http://webhelp.episerver.com/latest/cms-edit/personalizing-

content.htm

• Editing content: Projects: http://webhelp.episerver.com/latest/cms-edit/projects.htm

• Editing content: Content approvals: http://webhelp.episerver.com/latest/cms-edit/content-approvals.htm

• Editing content: A/B testing: http://webhelp.episerver.com/latest/cms-edit/ab-testing.htm

• Internationalization: http://webhelp.episerver.com/latest/platform/working-with-multiple-languages.htm

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 26

Episerver

Types of site built with Episerver products and services

27

• Transport hub, Gatwick airport: https://www.gatwickairport.com/

• Educational organization, Roehampton University:
https://www.roehampton.ac.uk/

• Restaurant, Pizza Hut: https://www.pizzahut.co.uk/

• Sports organization, English Football League: https://www.efl.com/

• Get inspired by our customer cases
https://www.episerver.com/solutions/our-customers/by-industry/

Module A – Getting Started with Episerver CMS – Overview

https://www.episerver.com/solutions/our-customers/by-industry/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 27

Episerver Framework and Episerver CMS APIs are what supports version management, preview, workflow,

access rights, etc. These are functions that enable you to work in Edit mode as an editor. It is the platform that

is available in different versions and developed continuously.

On top of the platform is the customized solution, which makes the website different from other websites.

Certified partners create the customized solution in cooperation with the customer. In slightly simplified

terms, the customized part can be divided into the following parts:

1. The access rights for editors and visitors to different pages.

2. The content on the website, which is stored in a database. Any images and documents are stored

outside the actual Episerver CMS on a suitable data source.

3. The company’s branding is saved in a format template (CSS). This contains the predefined fonts,

colors, etc. that are to be used on the website.

4. A number of different functions that visitors can use on the website, for example, participating in a

discussion forum, sending an e-mail with a link to a page or printing a page. Each function is normally

linked to an individual page template.

5. If applicable, integration with other systems. For instance an e-commerce or a community module,

with a wide variety of integration methods available.

Episerver

Web Server

System overview and your customized website

28

Module A – Getting Started with Episerver CMS – Overview

Episerver CMS API

Episerver Framework API

Developers

Administrators

Editors

Customized Solution

Content

Access Rights

System Integration

Functions

Graphical Website Design

Website assets

Windows Server

Episerver CMS API

Episerver Framework API & UI

ASP.NET

.NET Framework

IIS

SQL Server

Database

Customized Solution

Edit/Admin UI

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 28

Terminology
A content type defines a set of properties.

• Through these properties the content type defines the way in which content can be entered into a

page, block, media asets, or other type of content. A content type can be associated with multiple

content templates, which is useful when publishing content in multiple scenarios. Content types can

be created from code or from Admin view.

A content item is an instance of the .NET class that defined the content type.

• Content items are used by editors in Edit view to set the properties and fill them with values.

• When a content item is requested by a visitor, the most suitable content template that is associated

with the content type is used to render the content.

• Content templates consist of markup, calls to HtmlHelper extension methods, and dynamic

programming logic. Content templates in Episerver CMS can be created using either ASP.NET Web

Forms or ASP.NET MVC, but we recommend new websites use ASP.NET MVC.

Strongly Typed Models
The content system in Episerver CMS supports strongly typed models. This means that when a content item is

requested, the instance will be created as the model type that is associated with the content type in question.

The APIs contain generic classes and methods to return typed objects and there is also the possibility of

defining content types through annotations in code. The detection of code-defined content types is handled

via class and property attributes. During site initialization all assemblies in the bin folder are scanned and all

class types that implement IContent are passed to the synchronization engine. The annotation information is

constructed by merging the annotated settings with the settings stored in the database using the

administrative interface. Any automatic properties on your content type class will reflect the values of the

backing PropertyData collection without the need of writing any code.

Episerver

Partials

Content

Template

Content Type

How it all comes together - MVC

29

Module A – Getting Started with Episerver CMS – Overview

.cshtml

Layout .cshtml

View

.cs

Controller

.cs

Model

Property

Page

Website visitor

(+ Episerver Edit)

SQL

PagePage

1

*

Visual Studio (+ Episerver Admin UI)

.cshtml

Partial

View

.cs

Partial

Controller

(optional)

Object

Cache

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 29

1. When an editor logs on to the website, the system will control what the editor can do and where on the

website.

2. Editors will create content in page types, working with content blocks and page layout. Content such as

text and links are stored in the database.

3. When a visitor enters the web page, access rights are checked as well as membership in any defined

visitor groups and language settings. Depending on these, content starts to load.

4. The graphical design for the website is retrieved together with any images, videos or documents linking

to the page.

5. The final web page is assembled and displayed using the appropriate page template, depending on

the display device selected by the visitor accessing the page.

Episerver

Creating and displaying an Episerver CMS web page

30

Module A – Getting Started with Episerver CMS – Overview

Editor

Visitor

Content

Access rights

In the CmsEditors role

In the Everyone role

Create web pages

Personalized web pages

Visitor group
Rendered for display

channels

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 30

Episerver

Development versus production environment

31

Module A – Getting Started with Episerver CMS – Overview

LocalDb

IIS Express

BLOBs +

Index

Programmer’s Laptop

IIS

Editor Server

Database Server

SQL Server
BLOBs

File Server

WCF REST

+ Index

Index Server

IIS

Visitor Server

IIS

Visitor Server

Load Balancer

Scheduled Jobs

A new project’s Web.config is for

development not production…

…lots of configuration changes

required for production servers.

See Notes for DXC Service configuration with combined Editor/Visitor servers.

On-Premise decoupled production deployments

When deploying to production on-premise, you will typically have less flexibility in the number and size of

servers and in the depth of security available. Therefore we recommend that you configure a separate server

(or servers) for Editors with the Episerver UI enabled, and configure separate load balanced servers for Visitors

with the Episerver UI and some features disabled. This provides more control, security, and improved

performance and scalability.

http://world.episerver.com/documentation/developer-guides/CMS/security/decoupled-setup/

Cloud production deployments

When deploying to production in the cloud, you will typically have more flexibility in the number and size of

servers supporting automatic scaling up and down, and have in depth security with multiple layers: Microsoft

Azure infrastructure with permanent Red Teams performing penetration testing, a dedicated Web Application

Firewall with rules applied within seconds of newly discovered vulnerabilities, and so on. Therefore all servers

for Editors and Visitors can have identical configuration and enabled features.

http://world.episerver.com/documentation/developer-guides/CMS/security/Securing-edit-and-admin-user-

interfaces/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 31

Installing Episerver (first time installation)
http://world.episerver.com/documentation/Items/Installation-Instructions/installing-episerver/

Available Add-Ons
http://world.episerver.com/add-ons-page/

Licenses
A license is not required for Episerver when using Visual Studio Express & IIS Express. A demo license can be

requested good for 45 days if needed.

https://license.episerver.com/

System Requirements for Episerver CMS – Development Environment
Note that these requirements were correct at the time of writing and could have changed since.

The full and up-to-date System Requirements, including Production Environment and Client requirements for

Editing, are available on Episerver World: http://world.episerver.com/documentation/Items/System-

Requirements/System-Requirements---Episerver/

Note that the requirements are different for a production server and a development and demonstration

environment. You will need the Development and demonstration environment setup for this course or when

you develop solutions on your local computer.

Episerver

Episerver CMS product installation

33

• Installation guide: https://world.episerver.com/documentation/developer-guides/CMS/getting-started/

• Installing Add-Ons: NuGet packages only (Add-ons store has been removed in CMS 11)

• Licenses: only instance-bound starting in January 2018

• System requirements for Episerver CMS 11 or later

• Microsoft Windows Server 2012 or higher

• Microsoft Internet Information Services (IIS) 8.0, 8.5, or 10

• Microsoft SQL Server 2012 or higher

• Microsoft .NET Framework 4.6.1 or any later compatible versions

• Microsoft Internet Explorer 11, and two latest versions of Mozilla Firefox and Google Chrome

Module A – Getting Started with Episerver CMS – Overview – Installing and updating

You can manually install the Add-ons store but it is not recommended:
https://world.episerver.com/blogs/Ben-McKernan/Dates/2018/1/issue-with-modules-not-being-found-in-cms-11/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 33

Episerver

Episerver releases and new features

Episerver uses semantic versioning, e.g. 11.5.4

Name the numbers and what do they mean?

• Major: breaking changes

• Minor: new features and non-breaking changes

• Build/Revision/Release/Patch: bug fixes

New releases are usually every week:
http://world.episerver.com/releases/

Release notes:
http://world.episerver.com/documentation/Release-Notes/

New features are marketed usually twice a year:
http://world.episerver.com/features/

Module A – Getting Started with Episerver CMS – Overview – Installing and updating

• Updates to add-ons
- NuGet Add-Ons

• Release notes and documentation
- Episerver World

Platform and Framework

Edit view Admin view
• Continuous product

updates
- NuGet feed

34

Product updates are published weekly on the NuGet feed. By doing this we can get new functionality and fixes

out as soon as they are ready and respond quicker to feedback from our user and developer community.

More detailed information on package content and how to install the updates to your site(s) is available on

Episerver World: http://world.episerver.com/releases/

Versioning

We will use semantic versioning according to semver.org to version our packages and specify dependencies:

[Major].[Minor].[Patch].[Build]

Given a version number MAJOR.MINOR.PATCH, increment the:

• MAJOR version when you make incompatible API changes,

• MINOR version when you add functionality in a backwards-compatible manner, and

• PATCH version when you make backwards-compatible bug fixes.

Note: Microsoft names the version numbers: MAJOR.MINOR.BUILD.REVISION

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 34

Episerver

Configuring the Episerver NuGet package source

Episerver NuGet feed

https://nuget.episerver.com/feed/packages.svc/

Use HTTPS for enhanced security.

Episerver NuGet Feed Explorer

Filter by creator e.g. Episerver

http://www.david-tec.com/episerver-nuget-feed-

explorer/

Module A – Getting Started with Episerver CMS – Overview – Installing and updating

35

What does continuous delivery mean?

From version 7.5, Episerver has implemented continuous delivery. This means:

• Weekly updates for Episerver products.

• Market releases a few times every year that summarize the updates since the previous market release,

with mainly a user interface focus.

• Installation via NuGet only; Deployment Center is gone.

• Installed version can be seen in the Plug-in Manager.

• One licence file, Licence.config, that covers all products.

• Customers are recommended to keep their Episerver websites up-to-date.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 35

Episerver

Updating the NuGet packages

Using NuGet Package Manager (UI)

Set Package source to All, and use Search to

filter by EPiServer.

Using Package Manager Console

To safely update all packages to the major version used by Episerver CMS Visual Studio Extension

projects, set Package source to All, and enter the following command:

For the Alloy (MVC) project template, Episerver Search or Find can be installed with an option button.

For the Empty project template, if you need Episerver Search then enter the following commands:

Module A – Getting Started with Episerver CMS – Overview – Installing and updating

36

Update-Package -ProjectName AlloyDemo -ToHighestMinor

Install-Package -ProjectName AlloyTraining EPiServer.Search
Install-Package -ProjectName AlloyTraining EPiServer.Search.Cms

NuGet Package Manager Console guide

https://docs.microsoft.com/en-us/nuget/tools/package-manager-console

Installing the latest NuGet CLI: https://docs.microsoft.com/en-us/nuget/guides/install-nuget

Update-Package command

https://docs.microsoft.com/en-us/nuget/tools/ps-ref-update-package

Update-Package –ProjectName AlloyDemo –ToHighestMinor
Update-Package –ProjectName AlloyDemo –ToHighestPatch
Update-Package –ProjectName AlloyDemo EPiServer.CMS –Version 10.3

To remove a package that is causing conflicts:

Uninstall-Package Newtonsoft.Json -ProjectName AlloyDemo –Force

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 36

Episerver

Updating the Episerver database schema

After updating packages, if you run the site, you might see an exception like this:

In the Package Manager Console, select the correct Default project and then enter the following

PowerShell Cmdlet:

Or configure automatic schema changes with attributes in the Web.config. The account used in the

database connection string must have suitable rights to EPiServerDB:

Module A – Getting Started with Episerver CMS – Overview – Installing and updating

<episerver.framework updateDatabaseSchema="true" createDatabaseSchema="true" ...

Update-EPiDatabase

37

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 37

Episerver

Upgrading Episerver CMS

Episerver World has a great section that contains information about upgrading between Episerver CMS

major versions. Select a version to see specific information regarding breaking changes, and

upgrading and migration steps, if any. http://world.episerver.com/documentation/upgrading/Episerver-CMS/

To check the version of Episerver CMS:

• Admins: Navigate to CMS | Admin | Config | Plug-in Manager

• Editors: navigate to CMS | Reports and look at title bar:

Module A – Getting Started with Episerver CMS – Overview – Installing and updating

38

Upgrading to CMS 11
http://world.episerver.com/documentation/upgrading/Episerver-CMS/cms-11/

Upgrading is carried out manually and each organization decides whether or

not to upgrade. When you upgrade the platform, you do so for all the editors

at once.

Ted Gustaf has a blog post about how to upgrade to CMS 10:

https://tedgustaf.com/blog/2016/upgrade-to-episerver-10/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 38

Episerver

Episerver products and services you should know

39

• Episerver Commerce: e-commerce integration platform.

• Episerver Campaign: omnichannel marketing automation.

• Episerver Insight: omnichannel visitor journey visualization.

• Episerver Social: comments, ratings, feeds, groups and users.

• Episerver Personalization

• Personalized Find: customized search results.

• Episerver Advance: CMS content recommendations.

• Episerver Perform: Commerce product recommendations.

• Episerver Reach: personalized communication triggers.

Module A – Getting Started with Episerver CMS – Overview – Installing and updating

http://www.episerver.com/products/platform/all-episerver-products/

Episerver Social
User-generated content has proved to be one of the most effective ways to market your products or services,

to increase conversions rates, and to enhance employee productivity. Episerver Social offers extremely high

performance and reliability with a fluent and easy-to-use API – without the bloat and complexity of other

platforms.

https://www.episerver.com/solutions/our-customers/by-industry/ztable/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 39

Episerver

Episerver add-ons you should know

Name Description CMS 10 CMS 11 Additional Requirements

Social Reach Easily integrate and publish links to

content on social media sites.

2.2.4 2.3+ Developer account for Facebook, Twitter,

LinkedIn, and so on.

Google Analytics Monitor page views and click-throughs. 1.10.4 2.0+ Google account.

Languages Automatically translate content. 3.0.3 3.1+ Azure account.

Find Indexed search with advanced features. 12.6.2 12.7+ Requires licence. Included with DXC Service.

PowerSlice Content bucket with custom filters. 2.1.6 3.0+ Requires Episerver Find

Forms Editors can manage custom forms. 4.8 4.9+

A/B Testing A/B test any content. 2.4.4 2.5+

Visitor Groups Visitor Groups Criteria Pack. 1.3.1 2.0+

Visitor Group Usage Viewer. 10.0 11.0+

Developer Tools Warning! Experimental, not supported. 2.2.2 3.0+

BV Network 404 Handler 10.2 11.0+

Module A – Getting Started with Episerver CMS – Overview – Installing and updating

http://www.episerver.com/partners/add-on-store/

http://world.episerver.com/add-ons-page/

40

All the add-ons in this table work

with DXC Service and on-premise.

To install an add-on, enter the following command in Package Manager Console:

Install-Package -ProjectName AlloyDemo packagename –Version versionnumber

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 40

Name Package

Social Reach EPiServer.Social

Social EPiServer.Social.Comments.Site

EPiServer.Social.Ratings.Site

EPiServer.Social.Groups.Site

EPiServer.Social.Moderation.Site

EPiServer.Social.ActivityStreams.Site

Google Analytics EPiServer.GoogleAnalytics

Languages EPiServer.Labs.Languages

Find EPiServer.Find.Cms

PowerSlice PowerSlice

Search (Indexing Service) EPiServer.Search

Search (CMS Integration) EPiServer.Search.Cms

Forms EPiServer.Forms

A/B Testing EPiServer.Marketing.Testing

Episerver Developer Tools EPiServer.DeveloperTools

Visitor Groups Criteria Pack EPiServer.VisitorGroupsCriteriaPack

Visitor Group Usage Viewer VisitorGroupUsage

Live Monitor EPiServer.LiveMonitor

BV Network 404 Handler BVN.404Handler

Episerver

Partner add-ons you should know

41

Geta

• The popular 404 handler for EPiServer, enabling better control over your 404 page in addition to

allowing redirects for old urls that no longer work. https://github.com/Geta/404handler

• Geta Tags for EPiServer CMS. https://github.com/Geta/Tags

• Search engine sitemaps.xml for EPiServer CMS. https://github.com/Geta/SEO.Sitemaps

Wałdis Iljuczonok (aka Technical Fellow)

• EPiServer Scheduled job overview plugin. Gives you an easy way to overview all of your scheduled

jobs. https://github.com/valdisiljuconoks/TechFellow.ScheduledJobOverview

• EPiServer Blob provider for ImageResizer.Net.
https://github.com/valdisiljuconoks/ImageResizer.Plugins.EPiServerBlobReader

• Database driven localization provider for Episerver. https://github.com/valdisiljuconoks/LocalizationProvider

Module A – Getting Started with Episerver CMS – Overview – Installing and updatingWorks with DXC Service Yes

Requires license No

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 41

Episerver

Breaking changes in Episerver CMS 11

43

Episerver plans for one breaking change release per year.

http://world.episerver.com/documentation/upgrading/Episerver-CMS/cms-11/breaking-changes-cms-11/

If you stay up-to-date with continuous releases, and make note of our warnings about APIs that will

become obsolete, then a major version number update often only requires a project re-compile, after

reviewing potential breaking changes.

One of Episerver’s continuing goals is to slowly obsolete non-.NET Standard 2.0-compatible APIs.

• For example, the CreatePropertyControl method in PropertyData has been removed since it has a

dependency on System.Web.UI.Control which is part of the legacy technology ASP.NET Web Forms.

• You must target .NET Framework 4.6.1 because it is compliant with .NET Standard 2.0.

Improve performance when loading large amount of uncached content

http://world.episerver.com/documentation/Release-Notes/ReleaseNote/?releaseNoteId=CMS-7735

Module A – Getting Started with Episerver CMS – Overview – Breaking changes

Resetting passwords with ASP.NET Identity

It was previously not possible to reset a user's password programmatically when using the ASP.NET Identity

provider. Due to a bug, the method for resetting the password simply generated a reset token but never

changed the password.

ApplicationUIUserManager<TUser>.ResetPassword(IUIUser user) will now throw a not supported exception.

This is because ASP.NET Identity does not support generating new passwords for security reasons, i.e. it is

bad practice to send a new password to the user in plain text. The new method ResetPassword(IUIUser user,

string newPassword) should be used instead.

Both methods will still work when using the API with older membership providers.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 43

Episerver

Splitting of NuGet packages for .NET Standard 2.0

44

The goal was to split our NuGet packages into .NET Standard 2.0-compatible and non-.NET Standard

2.0-compatible packages.

.NET Standard 2.0-compatible packages

• EPiServer.CMS.Core

• EPiServer.Framework

Non-compatible packages

• EPiServer.CMS.AspNet

• EPiServer.Framework.AspNet

Module A – Getting Started with Episerver CMS – Overview – Breaking changes

.NET Standard 2.0

EPiServer.CMS.Core

EPiServer.Framework

Content Models &

non-UI components

.NET Framework 4.6.1 .NET Core 2.0

Visitor ServerEditing Server

Windows Server Linux Server

EPiServer.*.AspNet Content Delivery API*

Some Web.config entries now refer to

these new packages, for example, to

configure the localization provider.

Headless E-Commerce, Non-Starter or the Next Big Thing?
https://www.websitemagazine.com/blog/headless-e-commerce-non-starter-or-the-next-big-thing

*Version 1.0 (beta)

is not cross-platform.

StructureMap NuGet package

A new NuGet package, EPiServer.ServiceLocation.StructureMap, supports:

• Existing signed StructureMap 3, and

• New unsigned StructureMap 4.

The package only contains the integration, so it has NuGet dependencies on the official StructureMap

packages. Moving the dependency to a NuGet package is the same approach we have for logging, where we

have abstractions in the platform and an integration in a separate NuGet package. This will allow us to more

easily swap to the dependency injection system that is shipped with .NET Core, if we choose to do so in the

future.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 44

Episerver

TinyMCE editor, Dynamic Content, and XForms NuGet packages

45

TinyMCE editor has been moved into a separate NuGet package with its own versioning and breaking

changes. This is to allow us to have a release cycle for TinyMCE which is decoupled from the CMS UI

release cycle. From version 2.0, you cannot customize TinyMCE from Admin view. All changes are done

through code: https://world.episerver.com/documentation/developer-guides/CMS/add-ons/customizing-the-tinymce-editor-v2/

The legacy features Dynamic Content and XForms have been removed from the platform and moved

into separate NuGet packages as add-ons: EPiServer.DynamicContent, EPiServer.XForms

These packages have their own versioning and breaking changes, and will be updated less frequently.

As the platform progresses these features will become more limited over time, so we recommend

migrating from Dynamic Content to Blocks, and from XForms to Episerver Forms as soon as possible.

Module A – Getting Started with Episerver CMS – Overview – Breaking changes

Install-Package -ProjectName AlloyDemo EPiServer.CMS.TinyMce

Deprecations and other changes

jQuery

The jQuery library that is bundled with the CMS UI is being deprecated and should no longer be used.

Gadget Framework

The gadget framework has been deprecated but will remain in the product for CMS 11. We recommend that

you convert your [Gadget]s to [Component]s now.

Other Changes

Read this blog article for a detailed list of other changes:

http://world.episerver.com/blogs/Ben-McKernan/Dates/2017/9/planned-breaking-changes-2017-cms-ui/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 45

Episerver

Adding a new Episerver Web Site

Episerver CMS 11

Choose a minimum target of

.NET Framework 4.6.1

(required for compatibility with

.NET Standard 2.0)

Earlier versions

Choose a minimum target of

.NET Framework 4.5.2 for

support from Microsoft and

Episerver.

Module A – Getting Started with Episerver CMS – Overview – Visual Studio Extension

47

Episerver CMS Visual Studio Extension version 11.3.0.359 was released on 30th April 2018. It includes

EPiServer.CMS.Core 11.5.4 and fixes an issue with support for Visual Studio 2017 version 15.6 or later. Alloy

is now based on open source version from GitHub: https://github.com/episerver/alloy-mvc-template

When the Episerver CMS Visual Studio Extension has been installed, the Episerver project and item templates

will be available when using the Add > New Item option in Visual Studio. A current list of included templates

can be found in the Visual Studio Gallery: http://visualstudiogallery.msdn.microsoft.com

• Block Controller (MVC)

• Block Razor View (MVC)

• Block Template

• Block Type

• Block View

• Custom Property

• Initialization Module

• Initialization Module with

HTTP events

• Page Controller (MVC)

• Page Razor View (MVC)

• Page Template

• Page Type

• Scheduled job

• User Control

• Visitor Group Criterion

• Media Type

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 47

Episerver

Choose an appropriate project template

Empty*: an Episerver website without any

page types, controllers, or views, but

configured with a local database.

Alloy (MVC): a sample Episerver website with

a dozen sample page, block and media

types, controllers, views, and database with

content already published.

Episerver Find: advanced search capabilities

but requires additional license. Included

with DXC Service packages.

Episerver Search: built-in to CMS product

but not supported in DXC Service.

Module A – Getting Started with Episerver CMS – Overview – Visual Studio Extension

To manually install Episerver Find or Search, enter

the following at the Package Manager Console:

Install-Package EPiServer.Search.Cms
Install-Package EPiServer.Find.Cms

48

To add Episerver to an existing ASP.NET MVC project

https://nuget.episerver.com/en/OtherPages/Package/?packageId=EPiServer.CMS

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 48

Episerver

Understanding the Episerver website structure

App_Data: EpiserverDB*.mdf is the CMS database that stores content,

EPiServerErrors.log is the default log file for when exceptions occur,

GeoLiteCity.dat from MaxMind is how visitor groups track geolocation,

blobs contains media assets, Index contains Episerver Search indexes.

bin: Microsoft .NET, Episerver, and dependency assemblies.

Business: business logic, extension methods.

Models: C# classes that represent content in the CMS database.

Controllers and Views: combine to provide content templates.

modules: shell modules and any add-ons you install.

Static: images, styles (CSS), and scripts.

Web.config: primary configuration file for ASP.NET and Episerver.

Module A – Getting Started with Episerver CMS – Overview – Visual Studio Extension

49

An empty project folder structure:

• App-Data for content e.g. relational database, BLOBs, index.

• Business for business logic and helper libraries added during

development. For example, for containing subfolders: /Channels,

/Rendering, /Initialization, etc.

• Controllers for controller classes handling user input and responses.

• Models for content classes representing and manipulating data.

• Static for design and layout files such as scripts, images, and style sheets.

For example, /gfx, /css, /js

• Views for renderers (MVC), user controls, templates, and master pages.

Other folders in the structure, (not shown on this slide):

/ClientResources – for containing subfolders for images, scripts and files

/Resources – language files

Global.asax and App_Start: in a traditional ASP.NET MVC site, the Application_Start method calls multiple

types in the App_Start folder to set up routes, bundles, and so on. Episerver’s Global type sets up its own

custom routing. To do the equivalent, create Episerver Initialization Modules.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 49

public class EpiserverApplication : EPiServer.Global
{

protected void Application_Start()
{

AreaRegistration.RegisterAllAreas();

//Tip: Want to call the Episerver API on startup?
//Add an initialization module instead

}
}

Episerver

Understanding Web.config

system.web: ASP.NET and some settings for Episerver such as

authentication and authorization.

system.webServer: IIS and some settings for Episerver such as

static file caching.

episerver, episerver.framework: common Episerver settings.

connectionStrings: EpiserverDB database connection string.

Learn more about Episerver configuration:
http://world.episerver.com/documentation/developer-guides/CMS/configuration/

Module A – Getting Started with Episerver CMS – Overview – Visual Studio Extension

50

MaxMind GeoIP2

Episerver's geolocation visitor group criteria depends on MaxMind's legacy database that they are not

updating any more. To use MaxMind’s latest database, install the following package and update your

Web.config as described at the following link:

https://world.episerver.com/blogs/K-Khan-/Dates/2016/10/maxmind-geolite2-on-nuget/

Install-Package PixieEPiServerExtensionMaxMindGeoIP2

http://nuget.episerver.com/en/OtherPages/Package/?packageId=PixieEPiServerExtensionMaxMindGeoIP2

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 50

<episerver>
<applicationSettings
httpCacheability="Public"
pageValidateTemplate="false"
uiShowGlobalizationUserInterface="true"
uiUrl="~/EPiServer/CMS/"
urlRebaseKind="ToRootRelative" />

<episerver.framework>
<appData basePath="App_Data" />
<scanAssembly forceBinFolderScan="true" />
<virtualPathProviders>
<clear />
<add name="ProtectedModules"

virtualPath="~/EPiServer/"
physicalPath="Modules_Protected"
type="EPiServer.Web.Hosting.VirtualPathNonUnifiedProvider, EPiServer.Framework" />

</virtualPathProviders>
<geolocation defaultProvider="maxmind">
<providers>
<add name="maxmind"

type="EPiServer.Personalization.Providers.MaxMind.GeolocationProvider, EPiServer..."
databaseFileName="App_Data\GeoLiteCity.dat" />

</providers>
</geolocation>

Path to access Episerver CMS user interface

Path to store content, including SQL

database, BLOBs, logs, and index

Paths to the Episerver

user interface code

Configuring geolocation provider

(used by visitor group criteria)

Ted Nyberg who developed the Alloy templates has written a very good article on Episerver World about how

bootstrap is used for the Alloy site markup.

http://world.episerver.com/Articles/Items/Alloy-Templates-for-Episerver-CMS-7/

Valdis Iljuconoks wrote a nice article on bootstrap aware Content Area

http://tech-fellow.net/2015/04/02/bootstrap-aware-content-area-for-episerver-8-0/

Taking control of client-side rendering in OPE (Beta)

https://world.episerver.com/blogs/john-philip-johansson/dates/2017/10/taking-control-of-client-side-

rendering-in-ope-beta/

Episerver

Bootstrap and modern frameworks

51

In the Alloy project templates, Bootstrap is

used to handle the responsive design.

We will use it in this training course site too,

but you can use any front end technologies

that you prefer in your CMS sites for visitors,

for example, Angular or React. For extensions

to Edit and Admin views you should use Dojo.

CMS 11 has better support for Angular and

React during On-Page Editing (OPE).

Module A – Getting Started with Episerver CMS – Overview – Visual Studio Extension

Span=12

Span=4 Span=4 Span=4

Taking more control of client-side rendering in OPE (Beta) (CMS UI 11.2.0)
https://world.episerver.com/blogs/john-philip-johansson/dates/2017/12/taking-more-control-of-client-side-rendering-in-ope-beta2/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 51

EpiserverEpiserver

Exercise A1 – Setting up the AlloyDemo
site

Estimated time: 20 minutes

Prerequisites: Microsoft Visual Studio 2015 or

2017 with Episerver CMS Visual Studio Extension.

In this exercise, you will set up an Alloy (MVC)

website ready to explore CMS features with

sample content, and install some add-ons:

• Episerver Forms

• A/B Testing

Module A – Getting Started with Episerver CMS

52

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 52

Episerver

Global menu and user interface terms

54

Module A – Getting Started with Episerver CMS – Working areas

Multiple search providers can be installed at the same time.

Episerver CMS user interface terms

• Quick Access menu: once a user is logged in, gives quick access to Edit view and Dashboard.

• Global menu: Dashboard, CMS, Commerce, Find, based on access rights, links to Episerver site, Live view,

help, user settings, and global search.

• Dashboard containing Gadgets in one, two, or three columns.

• Edit view: two customizable panes on left and right with optional gadgets; Navigation on left, Assets on

right.

• Page Information Area: path to page, save information, notifications, publish options, view toggle, and a

Toolbar to: add content, toggle view settings, toggle preview, toggle compare versions.

• Page Tree: hierarchical structure for site.

• Context menus: “hamburger” menus for access to actions for the selected item.

• Search: at the top of the Navigation and Assets panes are search boxes filtered by those areas.

Dashboard

• Central customizable workspace used for easy navigation and integration of different products

• Dashboard is personalized with user preferences

• Dashboard Tabs and Components can be made available to certain users or groups

Global Search searches for ID, name, or keywords

• Customizable: create your own search-providers by implementing the ISearchProvider interface.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 54

Episerver

CMS views

55

• CMS | Edit

• Editors work in Edit view to manage

content in sites.

• CMS | Admin

• Administrators and developers work in

Admin view to configure sites.

• CMS | Reports

• A user interface that enables users to view standard or customized reports on Episerver content.

• CMS | Visitor Groups

• A user interface for creating rules used for personalizing content.

Module A – Getting Started with Episerver CMS – Working areas

Pin the top menu in the Episerver UI
https://world.episerver.com/blogs/David-Knipe/Dates/2017/12/pin-the-top-menu-in-the-episerver-ui/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 55

To learn how to build extensions to Episerver CMS, for example, Edit view gadgets, Admin view plug-ins,

custom reports, and custom Visitor Group criteria, attend the Episerver CMS Advanced Development training

course.

Six predefined reports

1. Not Published Pages

2. Published Pages

3. Changed Pages

4. Expired Pages

5. Simple Addresses

6. Link Status: requires the Link Validation scheduled job to be executed.

You can define your own custom reports and add them to report center by using the GuiPlugInAttribute.

Learn how on the Episerver CMS Advanced Development training course.

Episerver

CMS Reports

56

Module A – Getting Started with Episerver CMS – Working areas

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 56

Episerver

Edit view

58

• Editors work in Edit view to edit content

and build the website structure.

• Pages can be edited directly on-page.

• Content can be edited when displayed in

different resolutions and channels.

• All Properties view with sticky view mode

• Access to all page properties, not only

those visible on-page

• Reached from Edit view and used by

editors to manage advanced page

settings

Module A – Getting Started with Episerver CMS – Working areas – Edit view

Navigation pane Assets pane

Global

toolbar

Content area

Pane

settings
Pane pin

Scroll upwards to see the settings

header

“Sticky” On-Page and All Properties views

All Properties View is mainly used to work with the page settings and properties that are not accessible via the

on-page edit view:

• Dates for Published and Created

• Sort order for child pages

• Shortcut

• Property types that do not have an on-page edit control

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 58

Tabs are used to group properties in All Properties View

Grouping properties related to particular functionality on specific tabs makes it easier for Editors to find them.

It also makes it easier for the Administrator or Developer to restrict access to specific properties if needed.

• Default tabs that are always available for a page type are Content and Settings.

• Tabs that don’t contain properties are not shown.

• You set the access level on tabs via Admin view.

• You can create tabs from Admin view in the Edit Tabs section on the Config tab.

• You can specify custom GroupName/Tab string constants in a static class.

• You can control which tab a property is placed using code.

In the Alloy sample site a number of custom tabs (or GroupNames as they are called when working with them

programmatically) have been added, for example SEO and Site Settings.

The GroupNames are specified as constants in Global.cs and translations for them can be found in the

GroupNames.xml language resource file.

Episerver

Grouping properties on tabs

59

Module A – Getting Started with Episerver CMS – Working areas – Edit view

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 59

Episerver

Understanding Admin view

61

Admin

• Access Rights

• Scheduled Jobs

• Tools

Config

• System Configuration

• Property Configuration

• Security

• Tool Settings

Module A – Getting Started with Episerver CMS – Working areas – Admin view

Content Type

• Manage Page Types

• Page Types

• Block Types

• Media Types

• System Types

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 61

Episerver websites can be defined and managed from Admin. From version 7.5 of Episerver the setting values

specific to a site are stored in the database instead of in the configuration files. Settings that are common for

all sites have been moved to a new element applicationSettings in the <episerver> section in web.config.

Several Episerver sites can use the same IIS site. If the IIS site is configured to have a wildcard host, new sites

can be added to an existing solution from the CMS Admin without any additional configuration needed.

The above example is of a single-site configuration.

References

• The Manage Websites section in the Episerver Web Help

• The Deployment section in the Developer Guide for CMS

• Johan Björnfot’s blog on Episerver World: http://world.episerver.com/Blogs/Johan-

Bjornfot/Dates1/2013/12/Multisite-feature-in-Episerver-75/

Episerver

System Configuration – Manage Websites

62

Website settings are defined in Admin

view and stored in the database.

• Each website (or house in Pages tree)

requires a license, for example, two

sites/houses requires two licenses

• Multiple host names within one site do not

require additional licenses, for example, to

support language domains mapped to

language branches

Module A – Getting Started with Episerver CMS – Working areas – Admin view

Site license FAQ
https://world.episerver.com/blogs/filip-gondek/dates/2018/1/site-definition-and-licensing-confusion/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 62

Episerver

System Configuration – System Settings

63

Module A – Getting Started with Episerver CMS – Working areas – Admin view

General

1. Language support

Editing

2. TinyMCE style list customization

3. Content version limits

4. Media publishing

1

2

3

4

Tool Settings – Search Configuration
You can install multiple search providers at the same time, and

configure the order in which search results are shown, and disable

content types for different providers:

• Episerver Search

• Episerver Find

• Others

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 63

Episerver

Tools – Importing and exporting data

64

• Used for importing and exporting data.

• For instance, for deployment of new pages.

• Can export/import the following information:

• Content items, content types, frames, dynamic property

definitions, tabs, categories, files, visitor groups

• The file that is created when an export is performed, e.g.,

Myfilename.episerverdata, contains the data that where selected

in the export dialog.

• The file is a compressed text file that contains the information in

XML format.

Module A – Getting Started with Episerver CMS – Working areas – Admin view

Tools – Managing content
A useful view of the content tree, showing its hierarchical structure, combining pages, blocks, folders, and

media assets, with buttons to quickly edit or assign access rights:

1. System objects like Recycle Bin

2. Folders like For All Sites and For This Site

3. Media assets like FindReseller.png

4. Blocks like Bob

5. Pages like Alloy Plan

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 64

1

5

3

2

4

Episerver

Viewing logged changes

65

Episerver CMS automatically

logs all activities within the

system, so that Admins can

audit changes.

Change Log has options to

filter your view of the logs.

The underlying API is now

Activity Logging. The old

Change Log API is deprecated.

http://world.episerver.com/documentati

on/developer-

guides/CMS/logging/activity-logging/

Module A – Getting Started with Episerver CMS – Working areas – Admin view

Change Log can filter content by the actions shown in the following screenshot:

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 65

Episerver

Understanding Episerver CMS user and role personas

67

Episerver has common terms used to describe people who interact with an Episerver website:

Module A – Getting Started with Episerver CMS – Authentication and authorization

• Eve the Editor: access to Edit view to create,

change, delete, and publish content.

• Dana the Developer: defines content types

and templates, integrates external systems,

extends and customizes features.

• Alice the Administrator: access to Admin

view to control user access rights, system

and site settings, languages, tabs,

categories.

• Vicki the Visitor: anonymous

or registered viewer with

access to Live view.

• Chris the Community

Member: registered visitor

who contributes user-

generated content like

reviews and forum postings.

Images created by Freepik:

http://www.freepik.com/free-vector/nice-people-avatars-in-flat-design_844761.htm

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 67

Episerver

More specialized Episerver CMS user and role personas

68

Many organizations add more specialized personas, for example:

Module A – Getting Started with Episerver CMS – Authentication and authorization

• Nick the News Editor: specialized

editor who creates, edits, and

published news articles and press

releases.

• Michelle the Marketer or

Merchandiser: specialized editor

who creates digital campaigns

and manages the commerce

catalog of products.

• Larry the Lawyer: Although Larry

never needs to create, edit, or

publish content, he does need

to approve content used in

official press releases.

• Carlos the C-Level Executive:

CEO, CFO, CIO, and so on, often

have final approval for content

that is strategic to the company.

Images created by Freepik:

http://www.freepik.com/free-vector/nice-people-avatars-in-flat-design_844761.htm

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 68

Episerver

Authentication and authorization providers

69

Episerver CMS can use either ASP.NET Membership (2005) or ASP.NET Identity (2013) for

authentication and authorization.

To enable ASP.NET Membership aka “Forms”

To enable ASP.NET Identity

You will also need an OWIN

Startup class.

Module A – Getting Started with Episerver CMS – Authentication and authorization

<authentication mode="Forms">
<forms name=".EPiServerLogin" loginUrl="Util/login.aspx"

timeout="120" defaultUrl="~/" />
</authentication>

<authentication mode="None">
<forms name=".EPiServerLogin" loginUrl="Util/login.aspx"

timeout="120" defaultUrl="~/" />
</authentication>

Terminology

Authentication = “Who”: The process of identifying a user. The usual way of doing this is with a username and

a password.

• Membership provider. The module that handles authentication in the security model in ASP.NET.

Authorization = “What”: The process of determining the specific actions a user is allowed to perform.

• Role provider. The module that gives the base data for authorization in the security model in ASP.NET.

How to configure Episerver to use Active Directory
https://josefottosson.se/how-to-configure-episerver-to-use-active-directory/

EPiServer CMS UI AspNetIdentity OWIN authentication
You can configure the application to use EPiServer AspNetIdentity as the authentication module for managing

users and roles. This configuration requires the following NuGet package as a dependency:

EPiServer.CMS.UI.AspNetIdentity.

https://world.episerver.com/documentation/developer-guides/CMS/security/episerver-aspnetidentity/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 69

Episerver

ASP.NET Membership providers

70

Module A – Getting Started with Episerver CMS – Authentication and authorization

<membership defaultProvider="MultiplexingMembershipProvider"
userIsOnlineTimeWindow="10" hashAlgorithmType="HMACSHA512">

<providers>
<clear />
<add name="WindowsMembershipProvider"

type="EPiServer.Security.WindowsMembershipProvider, EPiServer" ... />
<add name="MultiplexingMembershipProvider"

type="EPiServer.Security.MultiplexingMembershipProvider, EPiServer.Framework"
provider1="SqlServerMembershipProvider"
provider2="WindowsMembershipProvider" />

<add name="SqlServerMembershipProvider"
type="System.Web.Providers.DefaultMembershipProvider, ..."
connectionStringName="EPiServerDB" enablePasswordRetrieval="false"
minRequiredPasswordLength="6" minRequiredNonalphanumericCharacters="0" ... />

provider1 must be writable to enable

CmsAdmins to manage users.

defaultProvider is the entry

point for authentication.

The Empty project template configures the MultiplexingMembershipProvider to use:

• SqlMembershipProvider as provider1, and

• WindowsMembershipProvider as provider2

…because provider1 must support read/write if the Admins need to be able to manage users and roles

through the Episerver UI.

The SQL provider is read/write. The Windows provider is read-only.

You can configure additional or alternative providers including Active Directory and ASP.NET Identity

http://world.episerver.com/documentation/developer-guides/CMS/security/episerver-aspnetidentity/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 70

<roleManager enabled="true" defaultProvider="MultiplexingRoleProvider"
cacheRolesInCookie="true">

<providers>
<clear />
<add name="MultiplexingRoleProvider"

type="EPiServer.Security.MultiplexingRoleProvider, EPiServer.Framework"
provider1="SqlServerRoleProvider"
provider2="WindowsRoleProvider"
providerMap1="SqlServerMembershipProvider"
providerMap2="WindowsMembershipProvider" />

<add name="WindowsRoleProvider" applicationName="/"
type="EPiServer.Security.WindowsRoleProvider, EPiServer" />

<add name="SqlServerRoleProvider"
type="System.Web.Providers.DefaultRoleProvider, ..."
connectionStringName="EPiServerDB" applicationName="/" />

</providers>
</roleManager>

Episerver

Managing authentication and authorization with code

71

Episerver Framework has APIs for registering roles and users.

• To create a role/group:

• To create a user and add them as a member of a role/group:

• To get the URL for logging in:

Module A – Getting Started with Episerver CMS – Authentication and authorization

roles.CreateRole("WebAdmins");

users.CreateUser("Admin", "Pa$$w0rd", "admin@alloy.com");
roles.AddUserToRoles("Admin", new[] { "WebAdmins" });

string url = FormsAuthentication.LoginUrl;

<authentication mode="Forms">
<forms name=".EPiServerLogin" loginUrl="Util/login.aspx" ... />

UIRoleProvider roles;
UIUserProvider users;

When you delete a group using the Admin view:

Create Episerver admin user by code
https://world.episerver.com/blogs/kristoffer-linden/dates/2017/12/create-episerver-login-account-by-code/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 71

Episerver

Access to working areas

72

Every logged in user has access to their own

customizable Dashboard.

Access to other working areas is controlled by

membership of these virtual roles:

• CmsEditors: access to CMS Edit and CMS Reports.

• VisitorGroupAdmins: access to CMS Visitor Groups.

• CmsAdmins: access to all CMS working areas.

• EPiBetaUsers: access to beta features, like Edit

Approval Sequence menu in CMS 10.1 to 10.8:

Module A – Getting Started with Episerver CMS – Authentication and authorization

CmsAdmins

CmsEditors VisitorGroupAdmins

The Add-ons store and its associated virtual role named PackagingAdmins have been removed in Episerver CMS 11.

Privileges for the access groups in a default installation

All access groups can log in and access Reports

CmsEditors (usually WebEditors)

• Can access Edit view and Reports.

• Create, change and publish pages and blocks in Edit view.

• Can give other users access rights in the website structure where Administer access level has been

granted.

VisitorGroupAdmins

• Can access the Visitor Groups UI and administer visitor groups.

• Was added to make it possible to give Editors access to Visitor Groups without giving access to the rest

of Admin.

CmsAdmins (usually WebAdmins and Administrators)

• Can access Edit, Admin, Reports, Visitor Groups

• Maintain the users and groups for the whole website.

• Set access rights on pages, page types and languages.

• Set access rights on files, folders and blocks in the Assets pane.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 72

Episerver

Stored roles and virtual roles

73

1. WebAdmins and Administrators: mapped to CmsAdmins in Web.config.

2. WebEditors: mapped to CmsEditors in Web.config.

3. Everyone: Read access to all content.

Module A – Getting Started with Episerver CMS – Authentication and authorization

WebAdminsAdministrators

§

WebEditors Everyone

<episerver.framework>
<virtualRoles addClaims="true">

<providers>
<add name="CmsAdmins" type="EPiServer.Security.MappedRole, EPiServer.Framework"

roles="WebAdmins, Administrators" mode="Any" />
<add name="CmsEditors" type="EPiServer.Security.MappedRole, EPiServer.Framework"

roles="WebEditors" mode="Any" />
<add name="Everyone"

type="EPiServer.Security.EveryoneRole, EPiServer.Framework" />

Any means the user can belong to any of the roles.

All means the user must belong to all of the roles.

1

2

3

Although the Web.config created by the project template maps Administrators (usually a Windows group) and

WebAdmins (usually a SQL-stored role) to CmsAdmins, you should not assume this to always be the case.

Therefore, always use the virtual role names when applying authorization rules.

For example, when setting access rights, apply them to CmsEditors, not WebEditors.

The following virtual roles are delivered with Episerver CMS:

• Anonymous

• Authenticated

• Creator

• Everyone

• Administrator

• CmsAdmins

• CmsEditors

Predefined virtual roles in Episerver CMS that are not pre-configured but worth knowing about:

• EPiBetaUsers (gives access to beta features)

• VisitorGroupAdmins (gives access to the Visitor Groups UI)

In addition to the predefined roles, it is very easy to create new virtual roles to allow access based on business

rules, such as only allow access during business hours. A common scenario is to define virtual roles that

evaluate to true if the user is a member of role1 and role2. This can be used to reduce the number of groups

needed for setting the required permissions in Episerver CMS.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 73

Episerver

Authorization for location paths

74

To configure additional groups or change the groups that should have access to Edit view or Admin in

Episerver CMS you need to change the appropriate location element in the Web.config file.

Good practice is to configure authorization of location paths to use virtual roles instead of stored roles.

Module A – Getting Started with Episerver CMS – Authentication and authorization

§

WebEditors

Everyone

<location path="EPiServer">
<system.web>

<authorization>
<allow roles="WebEditors, WebAdmins, Administrators" />
<deny users="*" />

<location path="EPiServer/CMS/admin">
<system.web>

<authorization>
<allow roles="WebAdmins, Administrators" />
<deny users="*" />

CmsEditors, CmsAdmins

CmsAdmins

Good practice: by doing this, you can change

the mappings in <virtualRoles> to use any

names for stored roles, e.g. change

WebEditors to ContentEditors.

Warning! If a user is not a member of the

allowed roles, then login will fail without an

explanation due to these location paths.

In a default installation of Episerver CMS there are preconfigured groups in Web.config that need to

correspond to the groups created in Admin.

The groups WebEditors, WebAdmins and VisitorGroupAdmins must be created in Admin before you can give

other users access to Edit view and/or Admin.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 74

Episerver

Authentication in Alloy (MVC) project template site

The Alloy (MVC) project template clears all the membership or role providers, and sets authentication

mode to None. In combination with an OWIN startup class (see Notes section), this activates the

ASP.NET Identity claims-based authentication system.

It also creates the WebAdmins group for you, gives the group full rights, and the first time you browse

to the new website on the local server machine, it prompts you to create an Admin user.

Module A – Getting Started with Episerver CMS
– Authentication and authorization

<authentication mode="None">
<forms name=".EPiServerLogin" loginUrl="Util/login.aspx"

timeout="120" defaultUrl="~/" />
</authentication> <membership><providers><clear /></providers></membership>

<roleManager><providers><clear /></providers></roleManager>

75

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 75

[assembly: OwinStartup(typeof(AlloyDemo.Startup))]
public class Startup
{

public void Configuration(IAppBuilder app)
{ // Add CMS integration for ASP.NET Identity

app.AddCmsAspNetIdentity<ApplicationUser>();
// prompt to register an admin account if browser is local on server
app.UseAdministratorRegistrationPage(()

=> HttpContext.Current.Request.IsLocal);
app.UseCookieAuthentication(new CookieAuthenticationOptions
{

AuthenticationType = DefaultAuthenticationTypes.ApplicationCookie,
LoginPath = new PathString(Global.LoginPath), // and so on

using EPiServer.Cms.UI.AspNetIdentity;
using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.Owin;
using Microsoft.Owin;
using Microsoft.Owin.Security.Cookies;
using Owin;
using System;
using System.Web;

Episerver

Access rights

CMS Administrators can manage access rights as well as groups and users:

Episerver CMS has six access rights:

Does Administer access rights give access to the Admin view?

No. So what does it do?

It allows someone without access to Admin view to set access rights:

Module A – Getting Started with Episerver CMS – Authentication and authorization – Access rights

77

Episerver user interface uses the terms access rights and

access levels. Developers use the enum AccessLevel.

The Access Rights content tree matches content in the Pages tree in Navigation pane, and the Media/Blocks

tree in Assets pane.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 77

Episerver

Assigning access rights for content

78

• Access rights can be set for

• Content items

• Content types (Create only)

• Permissions for Functions

• Languages (Change only)

• Access rights can be assigned to

• Users (but don’t)

• Groups (including virtual roles)

• Visitor groups (but only Read

access—note the other check boxes

are disabled in the screenshot)

Module A – Getting Started with Episerver CMS – Authentication and authorization – Access rights

Good practice: assign rights to virtual roles or stored roles,

never to users. If a stored role is mapped, never assign

rights to the stored role, always use the virtual role instead.

There are two approaches to setting access rights:

1. Top-down: Everyone can Read the Root, which is inherited, and then remove Read access to specific

content.

2. Bottom-up: Everyone cannot Read the Root, which is inherited, and then add Read access to specific

content.

Permissions for Functions

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 78

Creating instances of Content Types

Makes it possible to control who will be able to create items based on a Page-/Block-/ or Media Type

Some Content Types are too difficult, risky, or seldom used for all users.

Languages

Add users and/or groups that should be able to maintain pages in a specific language branch.

Permissions for Functions

It is good practice to enable Detailed error messages for troubleshooting for any role that can access Admin or

Edit View, i.e. the virtual roles CmsEditors and CmsAdmins. This will make it easier for the user (both editors

and administrators) to understand and report any error that might occur.

Episerver

Assigning access rights for creating content, managing languages, and functions

79

Module A – Getting Started with Episerver CMS – Authentication and authorization – Access rights

[EPiServer.DataAnnotations.Access(
Roles = "NewsEditors")]

public class NewsPage : StandardPage
{

Default access level for content types and languages is Everyone.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 79

Episerver

Relating users, stored roles, virtual roles, and access rights

80

Module A – Getting Started with Episerver CMS – Authentication and authorization – Access rights

Admin WebAdmins

SQL Membership / ASP.NET Identity

CMSUser Administrators

Windows Membership Provider

CmsAdmins

Web.config
<virtualRoles>

Resource Access

Root* Full

Resource Access

Root* Full

Recycle Bin Full

Everyone

Resource Access

Root* Read

All content types Create

All languages Change

*By default, all items in content tree inherit access rights from Root, except Recycle Bin.

Admin view

CmsEditors Edit view

Resource Access

Root* Full

Recycle Bin Full




Anonymous,

Authenticated,

Creator

VisitorGroupAdmins
Visitor Groups

Custom Membership Provider

WebEditorsEve

Access rights are stored in CMS database.

NewsEditorsNick Resource Access

News & Events Full

NewsPage type Create

Resource Access

Root* Create, Change

News & Events None

Web.config

EPiServerDB

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 80

<episerver.framework>
<appData basePath="App_Data" />
<scanAssembly forceBinFolderScan="true" />
<virtualRoles addClaims="true">
<providers>
<add name="Administrators"

type="EPiServer.Security.WindowsAdministratorsRole, EPiServer.Framework" />
<add name="Everyone" type="EPiServer.Security.EveryoneRole, EPiServer.Framework" />
<add name="Authenticated" type="EPiServer.Security.AuthenticatedRole, EPiServer.Framework" />
<add name="Anonymous" type="EPiServer.Security.AnonymousRole, EPiServer.Framework" />
<add name="CmsAdmins" type="EPiServer.Security.MappedRole, EPiServer.Framework"

roles="WebAdmins, Administrators" mode="Any" />
<add name="CmsEditors" type="EPiServer.Security.MappedRole, EPiServer.Framework"

roles="WebEditors" mode="Any" />
<add name="Creator" type="EPiServer.Security.CreatorRole, EPiServer" />

</providers>
</virtualRoles>

EpiserverEpiserver

Exercise A2 – Reviewing and creating
groups and users

Estimated time: 30 minutes

Prerequisites: Exercise A1.

In this exercise, you will follow good practice for

setting up authentication and authorization.

Module A – Getting Started with Episerver CMS

81

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 81

Episerver

Editorial cycle

If you aren’t familiar with the editorial cycle, the following blog article is useful for understanding it:

http://world.episerver.com/Blogs/Deane-Barker/Dates/2013/12/The-Editorial-Cycle-in-CMS-7/

The major events in the CMS content lifecycle:

1. Create 2. Save 3. Check-in (aka Ready to Publish) 4. Publish 5. Move to Trash 6. Delete

How many times will the Save event occur during a typical page editing session?

Warning! Be careful with code in the Save events. These events get called often, and could easily occur

a dozen times during a single editing session. Ensure code that runs during the Save events is both

efficient and idempotent – it can be run multiple times with no ill effects on other resources.

TinyMCE autosaves every 10 seconds and then again when it closes.

Module A – Getting Started with Episerver CMS – Editing content

83

The editorial cycle in detail

http://world.episerver.com/Blogs/Deane-Barker/Dates/2013/12/The-Editorial-Cycle-in-CMS-7/

http://world.episerver.com/Blogs/Mattias-Lovstrom/Dates/2010/7/Version-state-graph-of-a-PageData-

object/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 83

Episerver

Deleting content

84

All CMS content has the ability to be moved to the Trash.

To view the items in the Trash, select View Trash. A user must

have Administer rights to work with items in the Trash.

After 30 days in the Trash, the next time the scheduled job

named Automatic Emptying of Trash executes, the item will

be deleted. By default it runs once per week.

Admins can select Empty Trash to delete all items currently in

the trash permanently. This cannot be undone.

Admins can select Restore for an item in the Trash to restore

the item to its original place in the content tree.

In Set Access Rights, it is named Recycle Bin. In scheduled

jobs, it is called Trash. In code, Trash is called Wastebasket!

Module A – Getting Started with Episerver CMS – Editing content

WARNING! By default, only members of the Windows group Administrators can use the Trash/Recycle Bin.

Therefore in an Alloy (MVC) website you can’t see content that has been moved to the Trash or empty the

Trash. You must either give WebAdmins access rights, or better, give CmsAdmins access rights to Recycle Bin.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 84

You can select one of the previously published versions (add the Versions gadget to the Edit View to see them

all) and under Options for a previously published page there is a choice New Draft from Here, that when

selected will create a new Not Ready (i.e. Draft) version of the page .

Episerver

Versioning pages

86

• Pages are automatically versioned as CMS Editors

change properties and publish content.

• Controlling the maximum number of stored versions set in Admin view or Web.config:

• uiMaxVersions = 0 means that unlimited page versions will be kept

• Editors can create a new draft from a previously published version.

• Republication of a previous version creates a new page version.

Recommendation: show the Versions gadget in the Navigation pane.

Module A – Getting Started with Episerver CMS – Editing content – Content versions

<episerver>
<applicationSettings uiMaxVersions="20" ...

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 86

Compare modes
Toggle the Compare button on the toolbar to activate the compare view, two modes will be available by

default: All Properties and On-page:

• On-page mode allows comparison of content for two different versions side by side.

• All Properties mode allows comparison of properties between versions by highlighting properties that

changed with a yellow background.

Getting the visual comparison tool for Episerver
The package is open source and requires Episerver 11. It is available as a Nuget package. The source code is

available on Github: https://github.com/davidknipe/VisualCompare

Word of caution
This add-on overrides some core Episerver UI components involved in showing compare options to editors.

Every effort will be made to ensure this package stays compatible with the latest versions of the Episerver UI.

But it's something to bear in mind (and test) when upgrading to the latest versions of Episerver.

Episerver

Comparing versions

87

Module A – Getting Started with Episerver CMS – Editing content – Comparing versions

Visual comparison mode
https://www.david-tec.com/2018/03/visual-compare-option-available-for-episerver-11/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 87

Episerver

Multi-user editing

Admin has made multiple published

changes. Boris changes a property that

saves a draft and he sees this in his Versions

gadget:

Module A – Getting Started with Episerver CMS – Editing content – Multi-user editing

When Admin tries to change the same page they find it

is locked and they see this in their Versions gadget.

They can choose to Edit Anyway:

All editors work on one common draft version.

89

Add the permanentEditRetainPeriod attribute with a time span value to control how long you must wait before

permanent editing can be removed by the Remove Permanent Editing scheduled job. The default is 30 days.

In the following example it has been changed to three hours:

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 89

When content has a stop publish date the behavior of the edit UI has changed. Previously, a warning in the

notification field would always be visible if stop publish had been set. This has been changed so that the

warning is hidden until the stop publish date is in the near future.

How long before the stop publish date the warning becomes visible is controlled by the

expirationNotificationPeriod setting in the applicationSettings element in the <episerver> section of the site

configuration files. The default is 60 days.

Episerver

Controlling when content is published

91

• StartPublish property and StopPublish property are used by the system

to control when content should be published (i.e. visible to visitors).

• Content can be scheduled to be published at a later date and time.

• Publish Delayed Content Versions scheduled job checks for scheduled

content and publishes them at the specified time, setting the user who

scheduled it as the publisher in change log. Default interval is one hour.

• Tools | Manage Expiration and Archiving allows setting StopPublish.

When a page passes the expire date, the content will no longer be

considered to be published, and it returns a 404 status code.

• You can retain expired content without cluttering the content tree by

moving it to an archive parent. Archive Function scheduled job checks

for expiring content with an archive parent and moves it.

Module A – Getting Started with Episerver CMS – Editing content – Publishing content

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 91

For This Page/For This Block

• Files located in For This Page/Block belong to only that one specific page or block.

• Unused files, i.e. files that are not linked in pages, can be deleted automatically. This functionality only

applies to files located in For This Page.

• Use the scheduled jobs “Remove Unrelated Content Assets” and “Remove Abandoned BLOBs” in

Admin to remove the unused files and clean up binary stored data.

• Access rights, start-publish and stop-publish on page files are the same as on the page itself.

Files that are not being used only take space on disk!

Best Practice Tip to keep the assets archive neat and tidy: Use “For This Page”!

Tip #1: If working with a file that is to be included on more than one page, it is still beneficial to use “For This

Page” and upload it twice instead of putting the file in Global Assets. Why? Imagine the following common

scenario: A new file is added to Global Assets and then included in one or more pages. A few months later the

reference to the file is removed from all the pages, but the editor forgets to remove it from Global Assets.

Nobody else will dare to remove the file in case it is still being referenced and it will remain in the archive

taking up space and making clutter.

Tip #2: While developing in a shared project; have a ”master” file share configured that everyone uses.

Episerver

Assets pane: Blocks and Media

93

• Lists the Media files and Blocks for a site

(and Forms if you install Episerver Forms)

• Media files can be images, documents, video, etc.

• The same folder tree is displayed for both blocks and media files, so

you can think of the Blocks and Media tabs as being filters that apply

to the shared folder structure.

• Add multiple media files with drag-and-drop from file system.

• Select multiple media files and apply actions to all.

• Drag-and-drop assets from the assets pane to use them in

ContentArea, ContentReference, and XhtmlString properties.

Module A – Getting Started with Episerver CMS – Editing content – Media assets

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 93

Episerver

Media asset versions

If you upload

a media file

with the

same name,

it becomes a

new

version.

Module A – Getting Started with Episerver CMS
– Editing content – Media assets

94

File Versions

• It is possible to edit files and upload newer versions

• Versions gadget shows every version for the current file

• Maximum number of older versions can be set from admin or in web.config thru the “uiMaxVersions”

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 94

Ways to Upload Files

• In assets pane

• Drag-and-drop files to the currently selected folder

• Using the Upload Files option in the context menu

• Programmatically by using the Episerver CMS API

• Create a custom provider

Automatically publish media on upload

When you upload media, it is by default published (and indexed) even if it is not linked to any content. You

might not want this to happen with sensitive documents.

A system setting is available in Admin to stop media from being auto-published when uploaded. Another

alternative is to upload sensitive documents as media “for this block” or “for this page” and set the required

access rights on the content (i.e. the page/block). The access level on the media will then be the same as for

the content it belongs to. Or upload media as part of a project.

Episerver

Uploading media assets

95

Module A – Getting Started with Episerver CMS – Editing content – Media assets

This only affects the initial upload process. When an editor

changes properties of an image like Name and Description

they must remember to publish those changes!

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 95

• 3rd party Javascript HTML WYSIWYG editor integrated with Episerver CMS with cross-browser support

• Creates clean validated XHTML markup

• Drag and drop files and images to the Editor from the Assets Pane

• Easy for developers to plug into and extend

Episerver only bundles the standard plugins with the editor. So if you have a customer that wants to use a

premium plugin they will need to license that from TinyMCE directly.

First look at Episerver updated TinyMCE editor
https://swapcode.wordpress.com/2018/03/20/first-look-at-episerver-updated-tinymce-editor/

Configuring the editor with version 2.0

We have introduced a new TinyMceSettings class, which can be configured with any setting supported by

TinyMCE, and also a TinyMceConfiguration class, which is responsible for mapping settings to properties on

page types. Here is an example of how to extend the default settings and also how to configure custom

settings for a particular property:

context.Services.Configure<TinyMceConfiguration>(config =>
{

// Add content CSS to the default settings.
config.Default()

.ContentCss("/static/css/editor.css");

// Limit the block formats for the MainBody property of an ArticlePage.
config.For<ArticlePage>(t => t.MainBody)

.BlockFormats("Paragraph=p;Header 1=h1;Header 2=h2;Header 3=h3");
});

Full documentation on TinyMCE is available on http://www.tinymce.com/

Episerver

Rich text editor

97

Module A – Getting Started with Episerver CMS – Editing content – Rich text and images

TinyMCE integration is a separate package to

enable easier replacement with upgrades and

alternatives. TinyMCE integration version 2.0

has a modern user interface because it uses

the latest TinyMCE version 4.7.9:
https://world.episerver.com/blogs/Ben-

McKernan/Dates/2018/3/an-updated-tinymce-

package-has-been-released/

Episerver Spell Checker for TinyMCE
Install-Package EPiServer.TinyMCE.SpellChecker

Version 1.0 integration

Version 2.0 integration

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 97

TinyMce control identifier constants

To add toolbar and menu buttons we need to know the string constants defined for these which are listed on

the TinyMCE website: https://swapcode.wordpress.com/2018/04/02/tinymce-control-identifier-constants/

Customizing the image editor

With the image editor there are functions to crop and resize

images. By using preset formats you can make it easier for

editors to resize and crop to most commonly used sizes on

the website. To customize the preset sizes, modify the

imageEditor section in Web.config:

Episerver

Customizing the toolbar

You can customize the rich text editor toolbar (1) individually for

each property of each content type or (2) create custom settings to

share between multiple properties.

TinyMCE integration version 1.0 can be customized with Admin view

or by writing code: https://world.episerver.com/documentation/developer-

guides/CMS/add-ons/Customizing-the-TinyMCE-editor/

TinyMCE integration version 2.0 or later can only be customized with

code: https://world.episerver.com/documentation/developer-guides/CMS/add-

ons/customizing-the-tinymce-editor-v2/

editor.css allows you to customize the styles in the TinyMCE

dropdown and it gives the editors a realistic preview of the content

instead of having to jump between Edit view and Preview.

Module A – Getting Started with Episerver CMS – Editing content – Rich text and images

98

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 98

<episerver>
<imageEditor>
<sizePresets>
<preset width="250" height="150" />
<preset width="150" height="250" />

Episerver

Episerver CMS XForms

XForms is Episerver’s older forms technology. Do not use it unless you have to.

• XForms is based on the W3C standard.

• In Edit view, an XForm property provides a list of XForms that can be selected and the ability to

define new ones.

• The form layout uses HTML tables which is poor practice for modern responsive design.

• XForms data is stored in Dynamic Data Store (DDS).

http://world.episerver.com/documentation/developer-guides/CMS/forms/xforms-legacy-functionality/

Reasons to use XForms:

• You have to use Episerver CMS 8 or earlier.

• You have to use ASP.NET Web Forms.

Module A – Getting Started with Episerver CMS – Editing content – Forms

100

XForms is a separate package to enable a slimmer

core package if you do not use the feature.

Install-Package -ProjectName AlloyDemo EPiServer.XForms

Works with DXC Service Yes

Requires license No

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 100

Episerver

Episerver Forms

Episerver Forms is an improved forms technology accessed via Assets

pane in Edit view.

• Supported in ASP.NET MVC sites for Episerver CMS 9 or later.

• Form definitions are stored as content in the CMS, in a similar way

to blocks, so they can be treated as content.

• Form submissions are stored in Dynamic Data Store by default.

• Form elements are included like Text and Selection. Developers can

define their own by deriving from ElementBlockBase.

http://world.episerver.com/documentation/developer-guides/forms/

http://world.episerver.com/add-ons/episerver-forms/

Module A – Getting Started with Episerver CMS
– Editing content – Forms

101

Install-Package -ProjectName AlloyDemo EPiServer.Forms

Works with DXC Service Yes

Requires license No

Episerver Forms videos

Use the following link and scroll down to the Episerver Forms section:

http://webhelp.episerver.com/latest/_online-only-topics/videos.htm

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 101

Episerver

Styling Episerver Forms

102

The built-in form elements have minimal styling rules with the expectation that a developer will modify

the appearance for site application.

You can alter the default styling of a form by directly modifying the CSS file in

wwwroot\modules_protected\EPiServer.Forms\0.22.0.9000\ClientResources\ViewMode.

http://world.episerver.com/documentation/developer-guides/forms/css-styling-and-javascript/

Module A – Getting Started with Episerver CMS – Editing content – Forms

Forms and form elements are built on blocks, as you can see in

this screenshot of Admin view’s Content Type tab.

Basic and Action form elements can only be created inside a

Form container, but Form container is treated as a normal block

type. This can cause confusion if you do not have any of your

own block types, and an Editor tries to create a New Block:

Since Form container is the only block type registered, a new

instance of it is created without allowing the Editor to choose a

different type of block!

Page 102

Episerver CMS – Development Fundamentals

Episerver

Encrypting forms

103

By default, form submission data is stored as plain text. However, in some environments, the law

requires the encryption of that data.

Episerver Forms can use Azure KeyVault to store the Advanced Encryption Standard (AES) symmetric

algorithm key. Episerver then retrieves the key from KeyVault and uses it for encryption and decryption.

To enable Episerver Forms encryption:

1. Create a secret in Azure KeyVault.

2. Install the Nuget package EPiServer.Forms.Crypto.AzureKeyVault

3. Enable session state.

4. Modify the storage provider configured in the

~/modules/_protected/EPiServer.Forms/Forms.config file, as described at the following link:

Module A – Getting Started with Episerver CMS – Editing content – Forms

http://world.episerver.com/documentation/developer-guides/forms/encrypting-form-data/

Before the <providers> section, add a <storage defaultProvider="DdsEncryptedPermanentStorage"> element,

and within the <providers> element, specify three Azure KeyVault–related parameters for the cryptographic

engine:

Setup guide #Azure #KeyVault with Azure Active Directory Authentication
https://devblog.gosso.se/2017/11/setup-guide-azure-keyvault-with-azure-active-directory-authentication/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 103

Episerver

GDPR

104

It's common to get the user subscribed to newsletters or promotional offers at the same time as

signing up for events and other reasons. To be GDPR-compliant you must unbundle consent.

Module A – Getting Started with Episerver CMS – Editing content – Forms

GDPR and Episerver: Unbundled consent in signup forms
https://www.epinova.no/en/blog/gdpr-and-episerver-unbundled-consent-in-signup-forms/

General Data Protection Regulation and Episerver
Learn how to leverage your organization’s data to support GDPR compliance. Learn about the impacts,

opportunities and key considerations to prepare for the new data protection law.

https://www.episerver.com/products/features/gdpr/

GDPR compliance audit of the Episerver "QJet" demo site
https://www.epinova.no/en/blog/gdpr-compliance-audit-of-the-episerver-qjet-demo-site/

GDPR and Episerver: Storing consent context in submitted form data
https://www.epinova.no/en/blog/gdpr-and-episerver-storing-consent-context-in-submitted-form-data/

10 Considerations for GDPR
https://www.episerver.com/learn/resources/blog/peter-yeung/10-considerations-for-gdpr-part-1/

https://www.episerver.com/learn/resources/blog/peter-yeung/10-considerations-for-gdpr-part-2/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 104

Episerver

Reusing content with links

106

Content can have properties that represent links to

other content, either internal or external to CMS.

• Url represents a single link

• LinkItemCollection represents multiple links

Each link can be to:

• Internal page

• Internal media asset

• E-mail address

• External URL

Module A – Getting Started with Episerver CMS – Editing content – Reusing content

All Properties view of LinkItemCollection

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 106

Episerver

Reusing content with page shortcuts

107

Determines how the system should respond to a click on

the link rendered for the current page.

Links can be in a rich text property or in an automatically

generated menu.

• No shortcut (default)

• Shortcut to page in Episerver CMS: allows a page to

appear in multiple parts of multiple sites.

• Shortcut to page on another website

• No shortcut, display text only

• Fetch content from page in Episerver CMS: allows reuse

of property values in multiple pages

Module A – Getting Started with Episerver CMS – Editing content – Reusing content

The following shortcut types are available:

• No shortcut. Creates a link that displays the content you have created. By selecting this, you can also reset

the page after using other types of links.

• Shortcut to page in Episerver CMS. Links to another page on the same website. A visitor who clicks this

link will be transferred to the page you have linked to, and kept within the same navigation menu

structure.

• Shortcut to page on another website. Creates a link to an external page or to a document on the server.

Remember to include the entire URL address, including "http://".

• No shortcut, display text only. Creates a heading with no link in the menu, without displaying any

information or link to another page.

• Fetch content from page in Episerver CMS. Creates a link to another page from which content will be

retrieved into the original page within the same navigation structure. Useful when re-using content on the

website, in which case you only need to maintain it in one place.

Null values
Episerver properties with an empty value are never stored in the database. If you access it from code, it will

always be null – not an empty string, 0 or false as you maybe expected. Why null? It is by design and is very

convenient if you want to check if something is not set by an editor or does not exist on this page. You just

have to compare with null regardless of data type.

If a CMS Editor enables Fetch content from page in Episerver CMS then any properties that have not been set

will be loaded from the page that the CMS Editor selected to fetch data from.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 107

Shared blocks are pieces of content that can be reused between sites, while a single original is maintained in

Assets pane folder.

Editors drag and drop shared blocks from the Assets pane onto the content, into either content areas or rich

text areas.

Developers are able to:

• Render blocks differently depending on where they are used, or what display options the editor has

applied.

• Specify which blocks can be used in particular content areas.

Episerver

Reusing content with shared blocks

108

Shared blocks allow the reuse of small pieces of content on the website. Drag-and-drop the content to

a rich text or content area property.

Module A – Getting Started with Episerver CMS – Editing content – Reusing content

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 108

You will learn how to create partial content templates for pages, media, and folders in Module C: Rendering

Content.

Episerver

Reusing content with content areas

Content areas are

properties that are an

ordered collection of

content references to

pages, media, blocks,

forms, or even folders.

Blocks and forms

support automatic

rendering.

Pages, media, and

folders need a partial

content template.

Module A – Getting Started with Episerver CMS – Editing content – Reusing content

109

Page
Media

Form

Block

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 109

EpiserverEpiserver

Exercise A3 – Editing content

Estimated time: 20 minutes

Prerequisites: Exercises A1 – A2.

Creating, editing, saving, and publishing content.

In this exercise, you will get an understanding of

how an editor works in the Episerver CMS. You

will create a new page, add some links and

images, and publish the page.

Module A – Getting Started with Episerver CMS

110

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 110

Episerver

Understanding types of personalization

112

Personalization can be for a segment or for an individual, and it can be manually configured by

admins, editors, marketers, merchandisers, or it can be automatic using intelligent algorithms.

Module A – Getting Started with Episerver CMS – Personalizing content

Manual by Humans Automatic by Machine Learning

Segment

Individual

Content visible to groups, e.g. visitors

from a region or who have expressed

some interest by visiting a page, or of

types like resellers or gold tier partners.

Search results and recommendations

optimized based on group behavior, like

prioritizing best selling or highest margin

products, or popular content in a region.

Content visible to a registered visitor, e.g.

their shopping cart, a news feed of

content they have explicitly subscribed

to.

Search results and recommendations

optimized based on an individual’s

behavior, like searching for blue

products, or women’s clothes.

Personalization helps you strategically target the right products and information to the right visitors, instead

of showing the same content and products to everyone.

Related content from the CMS can be shown to visitors connected to what they have previously viewed, or

what they are buying on a commerce site. Related content includes news, how-to articles, technical support

documents, videos, and any of the content related to the products they have purchased or expressed an

interest in by visiting a marketing or information page.

The idea of personalizing content for a visitor is to show products or information that he might want or need.

The best results are gained when we combine what the visitor wants with what the company's vision of what it

wants to show or sell. This might be based on best margin, the strategic importance of the brand, products

that are overstocked, and so on.

In B2B scenarios, automated re-occurring messages are very common. For example, a company that sells

food to restaurants. Their restaurant customers might always buy milk before 15:00, so a personalized

reminder can be shown when they log in, with direct links to the most likely dairy products that they regularly

order.

A wholesaler where the website customers are mainly returning customers, who order several times a week, it

may not be beneficial to try to get better conversions by recommending best sellers. Instead, recommend

products that they did not come to the website to buy regularly.

To make the most of personalization, you need to have a clear idea what your goal is for your website and

what types of customers you have.

Getting B2B on board with online personalization
https://www.digitalcommerce360.com/2017/03/30/getting-b2b-board-online-personalization/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 112

Episerver

Understanding Episerver products and services for personalization

113

To implement personalization, Episerver offers multiple products, services, and features.

Module A – Getting Started with Episerver CMS – Personalizing content

Manual by Humans Automatic by Machine Learning*

Segment

Individual

*Contact Sales for availability in your region.

• Episerver CMS:

Visitor Groups

• Episerver CMS:

User Profiles

• Episerver Social:

Groups

• Episerver Personalized Find: search results

• Episerver Perform: Commerce product recommendations

• Episerver Advance: CMS content recommendations

• Episerver Reach: personalized e-mail communication and

event triggers

• Episerver Insights: dashboard for tracking visitors across

platforms

Planning for Personalization within Episerver
https://world.episerver.com/blogs/brain-fuel/dates/2018/4/planning-for-personalization-within-episerver/

Episerver CMS feature: Visitor Groups

Selecting which content to show using Visitor Groups is used a lot. Various customer segments are presented

Start pages tailored for them. To implement this, the first step is to define how, or if, you want to segment your

customers, and do you have different policies or practices for these segments.

Visitor Groups are easy to customize for an organization's data model, and you can use this custom data as

criteria in setting up Visitor Groups. If you already have a CRM system, and there are segments already

defined in it defined by business practices, this segmentation can be integrated into Episerver Visitor Groups

because custom Visitor Group criteria can be created by developers.

You might decide to divide your visitors into vertical segments: service stations, car repair shops, spare parts

dealers, and so on. These would all have their respective Visitor Groups defined in Episerver. Different

customers could see different product descriptions. For example, a retail customer (service station) could see

primarily commercial data about the product while an end-user (car repair shop) would see technical details

about the same product.

This means that the user experience is being optimized to fit the needs of the customer.

Episerver Personalization Portal
The user guide to Recommendations, Mail, and Triggers.

http://webhelp.episerver.com/Personalization/

Episerver personalization developer guides
https://world.episerver.com/documentation/developer-guides/personalization/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 113

Episerver

Understanding user profiles

115

Some websites allow visitors to register and manage their own user

profile, to remember a wish list or shopping cart, or to subscribe to

content notifications of updates.

Episerver CMS includes a user profile feature that can be implemented

by using the EPiServerProfile class and ASP.NET Profile configuration.

Episerver Social includes group, user, and ratings

micro-services that can be used to implement

personalization for individuals and segments.

Module A – Getting Started with Episerver CMS – Personalizing content – User profiles

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 115

Episerver

Implementing user profiles with EPiServerProfile class

116

Module A – Getting Started with Episerver CMS – Personalizing content – User profiles

@using (Html.BeginForm(actionName: "UpdateProfile", controllerName: null))
{

<input name="firstName" value="@Model.CurrentPage.Profile.FirstName" />
<input name="lastName" value="@Model.CurrentPage.Profile.LastName" />
<input name="title" value="@Model.CurrentPage.Profile.Title" />
<input name="company" value="@Model.CurrentPage.Profile.Company" />
<input type="submit" value="Save Changes" />

}

public ActionResult UpdateProfile(ProfilePage currentPage,
string firstName, string lastName,
string title, string company)

{
var current = EPiServerProfile.Current;

current.FirstName = firstName;
current.LastName = lastName;
current.Company = company;
current.Title = title;

current.Save();
return RedirectToAction("Index");

}

Add custom properties to the ASP.NET profile configuration, and then get and set through the

TryGetProfileValue and TrySetProfileValue methods:

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 116

<profile defaultProvider="DefaultProfileProvider">
<properties>

<add name="Address" type="System.String" />
<add name="ZipCode" type="System.String" />
<add name="Locality" type="System.String" />
<add name="Email" type="System.String" />
<add name="FirstName" type="System.String" />
<add name="LastName" type="System.String" />
<add name="Language" type="System.String" />
<add name="Country" type="System.String" />
<add name="Company" type="System.String" />
<add name="Title" type="System.String" />
<add name="CustomExplorerTreePanel" type="System.String" />
<add name="FileManagerFavourites" type="System.Collections.Generic.List`1[System.String]" />
<add name="EditTreeSettings" type="EPiServer.Personalization.GuiSettings, EPiServer" />
<add name="ClientToolsActivationKey" type="System.String" />
<add name="FrameworkName" type="System.String" />

</properties>
<providers>

<add name="DefaultProfileProvider" type="System.Web.Providers.DefaultProfileProvider, ..."
connectionStringName="EPiServerDB" applicationName="/" />

</providers>
</profile>

• Personalization can be done for partial pages and shared blocks in a content area, and for any content

in a rich-text editor (property of type XHTML string)

• Personalization is based on Visitor Groups, which are defined as a number of criteria

• Visitor Group Criteria can be defined with logical rules or with fuzzy scoring

• You can develop your own criteria and plug it into the existing criteria collection

• You can preview any page or block as any visitor group by using the view toggle setting

• Built-in reports on which groups visit your site: Visitor Groups Statistics gadget

• Visitor groups can be used as Security roles when setting access rights

Personalization of Pages
Like Blocks, Pages can be personalized. An Editor can edit a page, and click Visible To, and then remove

Everyone’s Read access rights, and add a Visitor Group and give it Read access rights.

Episerver

... and then ...

2: Use the visitor groups

in pages and blocks

1: Create visitor groups

(and criteria)

Personalizing content with visitor groups

118

Module A – Getting Started with Episerver CMS – Personalizing content – Visitor Groups

Block

Page

Time and Place
Criteria

Geographic
Coordinate

Geographic
Location

Time of Day

URL

Landing URL

Search Keyword

Referrer

Site Criteria

Number of Visits

Visited Page

User Profile

Visited Category

Visitor Groups

Visitor Group
Membership

• There are 11 built-in criteria.

• You can install VisitorGroupsCriteriaPack add-

on with 11 more criteria.

• You can create your own custom criteria.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 118

Previewing personalized content
Given the above scenario, this would be the result of previewing the page that the personalized block is used

on and toggle the view setting to see it as the different visitor groups:

Visitor Group Usage Viewer by David Knipe

https://www.david-tec.com/2017/12/visitor-group-usage-viewer-for-episerver-11/

The visitor group usage viewer adds a new component that shows

the visitor groups that are used on the current content item when

in Edit view.

Install-Package VisitorGroupUsage

Episerver

Personalizing shared blocks

119

Module A – Getting Started with Episerver CMS – Personalizing content – Visitor Groups

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 119

Instead of time-consuming and error-prone rules-based personalization, Episerver Advance makes use of

autonomous personalization – where machine learning based algorithms are used to inject the right content

at the right time for every single visitor.

Personalized content on first page view: Episerver uses contextual data, such as ad clicks, geolocation, and

organization affiliation to present relevant content on start pages, content listings and landing pages.

Automatically surfaced information: For many websites and portals, it is deep content that is most likely to be

relevant to a visitor. Episerver uses tagging and content filtering to surface content that is more likely to serve

the visitor’s needs.

Interactive content drill-down: From the first content selection, visitors are quickly able to drill down into large

content repositories thanks to Episerver’s intuitive guided navigation.

Copyright © Episerver AB. All rights reserved.

Page 121

Episerver

Benefits of Episerver Advance’s smart content

Content is automatically selected for each visitor

based on visitor profile, interest, or work role.

For content marketing: Highly relevant content

suggestions are presented on every visit.

For articles and news: Keep visitors engaged and on

the site with content suggestions that are relevant to

topics, and optimized for popularity and newness.

For intranets and portals: Present information and

documents that are relevant to each employee,

enhancing content discovery and reducing time

spent on information search.

Module A – Getting Started with Episerver CMS – Personalizing content – Smart content

121

https://www.episerver.com/products/platform/personalization/smart-content/

Episerver Profile Store

Episerver Insight

EPiServer.Insight.UI

Episerver CMS

EPiServer.Tracking.PageView

EPiServer.Personalization.Cms

3
2

1

1. Track visitor content views in CMS

2. Request personalized content in CMS

3. Explore visitor journeys through Insight

Episerver CMS – Development Fundamentals

Episerver

Episerver Advance API

122

To enable smart content recommendations install these packages and configure your account:

Apply the [PageViewTracking] attribute to all action methods…

Module A – Getting Started with Episerver CMS – Personalizing content – Smart content

Install-Package -ProjectName AlloyDemo EPiServer.Tracking.PageView
Install-Package -ProjectName AlloyDemo EPiServer.Personalization.Cms

public class StartPageController : PageControllerBase<StartPage>
{

[PageViewTracking]
public async Task<ActionResult> Index(StartPage currentPage)

using EPiServer.Personalization.CMS.Model; // RecommendationRequest, Context
using EPiServer.Personalization.CMS.Recommendation; // IRecommendationService
using EPiServer.Tracking.PageView; // [PageViewTracking]

private readonly IRecommendationService recommendationService;

var recommendationRequest = new RecommendationRequest
{

siteId = siteId, numberOfRecommendations = 5, // or however many you want
context = new Context { contentId = contentId, languageId = languageId }

};
var result = await recommendationService.Get(this.HttpContext, recommendationRequest);

…and then query the

recommendation service:

https://world.episerver.com/documentation/developer-guides/personalization/advance-api/

Example block for displaying recommended content on a page:
https://github.com/episerver/ContentRecommendationBlock

Episerver Insight and the Profile Store – Basic Implementation
https://blog.nicolaayan.com/2018/04/episerver-insight-profile-store-implementation/

A developers guide to Machine Learning - Tess Ferrandez-Norlander
https://www.youtube.com/watch?v=hjpUHZY5-18

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 122

public class StartPageController : PageControllerBase<StartPage>
{

[PageViewTracking]
public async Task<ActionResult> Index(StartPage currentPage)
{

var siteId = SiteDefinition.Current.Id.ToString();
var contentId = currentPage.ContentGuid.ToString();
var languageId = currentPage.Language.Name;

var recommendationRequest = new RecommendationRequest
{

siteId = siteId,
context = new Context { contentId = contentId, languageId = languageId },
numberOfRecommendations = 5 //or another number as needed

};

var result = await recommendationService.Get(this.HttpContext, recommendationRequest);

Project feature – media assets

Uploaded media that is associated with a project is not published until it is manually published or published

via scheduling, even if the automatic publish for media assets setting is turned on.

Episerver

What are projects?

A project lets you manage the publishing process for multiple related content items.

Module A – Getting Started with Episerver CMS – Managing content – Projects

124

http://webhelp.episerver.com/latest/cms-edit/projects.htm

Projects gadget for individuals Projects feature for teams

Accessible to users who add the gadget. Accessible only if it is enabled for the entire site.

Added to your own user interface. Enabled or disabled for the entire site and affects all users.

You need to add content manually to a project. Content is automatically added if a project is active.

When the project is published, the project is obsolete

and can no longer be used.

You can continue working with a project even after some or

all items are published.

All project items must be set to Ready to publish

before the project is published.

You can publish multiple items that are set to Ready to

publish and leave items that are not ready for a later time.

There are no collaboration features. Collaborate by adding comments to projects and items.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 124

Episerver

Projects feature for teams

125

Projects feature is either enabled or

disabled for the entire site and affects all

users, it is enabled by default.

The project interface consists of: the

project bar, the Overview page, and the

Project Items tab in the Navigation pane.

Editing actions automatically associate a

content item with an active project.

To disable Projects feature, you need to

add an entry to appSettings in

Web.config:

Module A – Getting Started with Episerver CMS – Managing content – Projects

http://webhelp.episerver.com/latest/cms-edit/projects-feature.htm

<appSettings>
<add key="episerver:ui:IsProjectModeEnabled" value="false" />

http://world.episerver.com/documentation/developer-guides/CMS/projects/

Project Items tab and Project Items gadget show a simplified view of the Projects feature Overview, as shown

in the following screenshot:

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 125

Episerver

Projects gadget for individuals

126

Create a project from the Projects gadget

menu, and manually add desired content

items through drag-and-drop.

You can prepare the draft versions of the

content items first, and then create the project

and add them, or the other way around.

To be able to publish a project, all included

items must first be set to status Ready to

Publish.

Only available if Projects feature is disabled!

Module A – Getting Started with Episerver CMS – Managing content – Projects

http://webhelp.episerver.com/latest/cms-edit/projects-gadget.htm

The option to add the Projects gadget, as shown in the following screenshot, will only be visible if Projects

feature is disabled!

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 126

Sequences and reviewers

An approval sequence can be set up with any number of approval steps and any number of reviewers in each

step. The sequence is set up by an administrator, who also defines, for each step individually, who can

approve a content item.

It is possible to have only one person as reviewer in a step, but it is recommended to have at least two (per

language) in case one of them is unavailable.

As soon as one of the reviewers in a step approves the content, that step is considered completed and the

item moves to the next step in the approval sequence.

When a content item enters an approval step, the reviewers in that step are notified by email and in the user

interface that they have an item to approve.

When the content has been approved in all steps, it is automatically set as Ready to Publish, and anyone with

publishing rights can publish it.

Group/role support was added in CMS 10.10 and later

We recommend that you use small groups because when you assign a group with lots of members, there is a

tendency for everyone in that group to assume that someone else will approve the content. It will also get

annoying for all those group members if you have email notifications enabled, so use common sense.

http://world.episerver.com/blogs/john-philip-johansson/dates/2017/5/introducing-grouprole-support-in-

content-approvals/

Episerver

What are content approvals?

Content approvals is a way to make sure

that content is reviewed and approved

before it is published.

• The reviewers are defined by an

administrator in an approval sequence.

• One or more appointed reviewers must

then approve the content item before it

can be published. To review content the

user must have Change access rights.

• When an editor has finished working on a

content item, the item is set to Ready for

Review.

Module A – Getting Started with Episerver CMS – Managing content – Content approvals

128

http://webhelp.episerver.com/latest/cms-edit/content-approvals.htm

From CMS 10.1 to CMS 10.8, the Content Approvals feature

was in beta, so an editor had to be a member of the

EPiBetaUsers virtual role to access it. CMS 10.9 and later has

it enabled for everyone. Group support was added in 10.10.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 128

Episerver

Example approval sequence for a press release

129

Module A – Getting Started with Episerver CMS – Managing content – Content approvals

Vicki the
Visitor

•Reads the press
release

Nick the
News Editor

•Publishes the
press release

Carlos the C-
Level

Executive

•Reviews the
press release for
strategy

•Approves or
declines

Larry the
Lawyer

•Reviews the
press release for
legal issues

•Approves or
declines

Nick the
News Editor

•Creates a press
release about a
new product

•Submits it for
approval

Images created by Freepik:

http://www.freepik.com/free-vector/nice-people-avatars-in-flat-design_844761.htm

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 129

Reviewers, roles, languages, and required comments on approve or decline

It is only the role name that is part of the definition, not the users in the role. The validation to see if a user is

part of a role is made at the moment it is needed. This means that a user can be added to a role or removed

from one and that will affect an already started approval.

To avoid content getting stuck in an approval step if a reviewer is unable to approve, it is recommended that

you have at least two reviewers (per language) in a step.

• An administrator can always approve and publish a page.

• Administrators and the editor who started the approval sequence can cancel the approval sequence at any

step.

• If you have content in more than one language, each language must have at least one reviewer.

• The administrator decides whether a reviewer can approve content for all languages or for specific

languages. Therefore, it is possible to have different reviewers for different languages.

• Administrators can require comments on Approve and/or Decline.

http://world.episerver.com/blogs/Khurram-Hanif/Dates/2017/3/content-approvals---require-comments-for-

decline-and-approve/

Episerver

Content approvals on assets

Assets, such as blocks and media (and also forms and catalogues if you

have Episerver Forms and Episerver Commerce installed), cannot have

individual approval sequences. Instead, the content approval sequence is

set on each assets folder, and all assets in a folder have the same

approval sequence set.

The Blocks and Media folders in the assets pane are actually the same

folders in the software and share the same content approval sequences;

the Blocks and Media tabs in the assets pane are merely a way of

filtering out blocks if you are in the Media tab and vice versa.

Forms and Commerce catalogues have their own structures.

Editors can drag and drop an unapproved image into a rich-text property

but visitors will not see it because the returns a 404.

Module A – Getting Started with Episerver CMS – Managing content – Content approvals

130

http://webhelp.episerver.com/latest/cms-admin/managing-approval-sequences.htm

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 130

Episerver

Content approvals on projects

Content Approvals work

with Projects but only on a

per-content basis, and not

for the whole Project.

When approving or

declining content you may

have to give a reason for

your action. This comment

will be visible in the project

overview if the content item

in review is associated with

a project.

Module A – Getting Started with Episerver CMS – Managing content – Content approvals

131

http://webhelp.episerver.com/17-3/cms-edit/content-approvals.htm

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 131

Adding a very large group or role to an approval step will result in notifications being sent out to all the current

members of the group on every step in a content approval sequence. This can have negative effects on the

performance of the server, as well as probably annoy users. Therefore, we have added a new configuration

setting, "ApprovalStepRoleUserLimit", that defaults to 100 users per group. Adding a group larger than this

setting to a content approval sequence, triggers a validation warning, and it also limits the amount of

notifications per group.

Episerver

Notifications and tasks

If you have started a content approval sequence by setting an item to

Ready for Review, or you’ve been set as a reviewer, you receive

notifications in the user interface.

• The bell icon in the toolbar displays the number of new notifications

you have; click the icon to display a list of notifications. From the

notification list, you can go to the item that needs to be reviewed.

• If your system is configured to use email notifications, you will also

receive an email; how often these notifications are sent depends on

the system configuration.

• To keep track of the content items you have sent for review, items that

are waiting for your approval or items you have already approved, use

Tasks in the Navigation pane.

Module A – Getting Started with Episerver CMS – Managing content – Content approvals

132

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 132

Example change approval

Tina has been asked to change the order of the products in the Alloy top navigation menu. Since the

navigation menu order is controlled by the order of the pages in the page tree, she moves the Alloy Track page

in the page tree. The Alloy Track page has a content approval sequence defined so the page is not

immediately moved, and Tina sees a message that the move of the page is awaiting approval.

The approval sequence is set up with one step, and both reviewers, Alicia and Carlos, are notified in the user

interface when they log in that Tina has moved Alloy Track and that they need to approve that move. Carlos

now approves the move and the page is moved immediately and the top navigation menu is updated on the

website. If Carlos had instead declined, the page would have remained in its original position.

Episerver

Change approvals

Ensure changes that affect the website are reviewed and approved before they are applied, including:

• changes to access rights,

• language settings for fallback and replacement languages,

• content expiration dates, and moving pages and blocks in the structure.

When all steps in the approval sequence have been approved, the change is immediately applied.

Change approvals use the same approval sequences as content approvals. This means that if you have

set a content approval sequence for a content item, the same sequence and reviewers are used when

changes are performed on that content item.

Change approvals affects all versions of the page or block, so while one change is in review, you

cannot perform any of the changes that must be approved before being applied.

Module A – Getting Started with Episerver CMS – Managing content – Content approvals

133

Install-Package -ProjectName AlloyDemo EPiServer.ChangeApproval

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 133

How A/B testing works

1. When a visitor views content, the visitor sees either the

original (A) or the variation (B). A/B testing logs which

version the visitor sees. If they return to the content, the

visitor sees the same version. If they clear cookies, and

revisit the content, they are considered a new visitor in

the test.

2. If a visitor clicks on the advertisement, the target page

appears and A/B testing logs the action as a conversion.

3. When the test completes, the version that achieves the

best results (the most clicks) is declared the winner of

the test.

4. You can manually pick a winner or the winner is

automatically published when the test completes.

Automatic publishing only happens when statistically

significant.

Episerver

What is A/B testing?

A/B testing lets you create variations for a number of page elements (blocks, images, content, buttons,

form fields, and so on), and then compare which variation performs best.

• It measures the number of conversions obtained from the original (control) versus the variation

(challenger), and the one that generates the most conversions during the testing period is typically

promoted to the design for that page.

• A/B testing comes with a number of predefined conversion goals you can use when setting up a test,

and it is also possible for Episerver developers to create customized conversion goals.

• A/B testing is an add-on and requires a separate installation, as it is not included by default in an

Episerver installation. The A/B testing add-on requires no additional license.

Video (5 minutes): https://episerver.wistia.com/medias/zw4482b8h9

Module A – Getting Started with Episerver CMS – Managing content – A/B testing

135

http://webhelp.episerver.com/latest/cms-edit/ab-testing.htm

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 135

Visitor group criterion for A/B testing available for Episerver 11

The Episerver visitor group criterion that allows editors to define visitor groups depending on whether an end

user is participating in an A/B test is now available for Episerver 11.

Install-Package AbTestVisitorGroupCriteria

The package adds a new visitor group called “Participating in A/B test” as shown below:

https://www.david-tec.com/2018/01/visitor-group-criterion-for-ab-testing-available-for-episerver-11/

Episerver

Installing the A/B testing add-on

Use NuGet Package Manager…

…or enter the following command in

the Package Manager Console:

You will need to update dependent

packages and the database schema:

Module A – Getting Started with Episerver CMS –
Managing content – A/B testing

136

Install-Package -ProjectName AlloyDemo EPiServer.Marketing.Testing

Update-Package -ProjectName AlloyDemo -ToHighestMinor

Update-EPiDatabase

Works with DXC Service Yes

Requires license No

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 136

Episerver

A/B testing conversion goals for Episerver CMS

There are three built-in conversion goals to choose from (Episerver Commerce adds three more):

1. Landing Page: The chosen page is the one that a user must click on in order to count as a

conversion. Results: Views are the number of visitors that visit the page under test. Conversions

are the number of visitors that clicked through to the landing page at any point in the future while

the test was running.

2. Site Stickiness: Converts when a user visits the content under test and then visits any other page

within the same browser session. Results: Views are the number of visitors that visited the web

page. Conversions are the number of visitors that clicked through to any other page within the

specified time (in minutes).

3. Time on Page: Monitors how long a visitor spends on a page and converts after a specified amount

of time. Views: Number of visitors that viewed the page under test. Conversions: The number of

visitors that remained on the page for the minimum time specified (in seconds).

Module A – Getting Started with Episerver CMS – Managing content – A/B testing

137

Developers can define their own conversion

goals, aka key performance indicators (KPIs).

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 137

A/B testing example

In Alloy, edit the Alloy Meet jumbotron block, and changed the “!” to a “?” in the Header property. If you try this

demonstration, make sure you apply the A/B test to the block and not the page you drag and drop it onto.

Publish button has a new choice: A/B Test Changes. Do NOT publish the change!

Episerver

A/B testing landing page goal example

As well as configuring the goal:

You also configure the participation percentage

and duration (in days):

Click Start Test:

Module A – Getting Started with Episerver CMS – Managing content – A/B testing

138

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 138

Episerver

A/B testing viewing results example

The content with the most conversions is highlighted with a flame icon:

You can: (1) let the test run to completion,

(2) pick the winner, or (3) abort the test.

Module A – Getting Started with Episerver CMS – Managing content – A/B testing

139

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 139

A/B testing and Google SEO

How does A/B testing affect what Googlebot sees on your site? Below are some guidelines for running an

effective test with minimal impact on your site’s search performance:

No cloaking. Showing one set of content to humans, and a different set to Googlebot is against Google

guidelines. Make sure that you’re not deciding whether to serve the test, or which content variant to serve,

based on user-agent.

Use rel=“canonical”. If you’re running an A/B test with multiple URLs, you can use the rel=“canonical” link

attribute on all of your alternate URLs to indicate that the original URL is the preferred version. We

recommend using rel=“canonical” rather than a noindex meta tag because it more closely matches your

intent in this situation.

Use 302s, not 301s. If you’re running an A/B test that redirects users from the original URL to a variation URL,

use a 302 (temporary) redirect, not a 301 (permanent) redirect.

Episerver

A/B testing admin configuration and Tasks pane

Navigate to CMS | Admin | Config | Tool Settings | AB Testing

Configuration to change defaults:

Module A – Getting Started with Episerver CMS – Managing content – A/B testing

140

Use Tasks to track tests.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 140

Website testing & Google search https://webmasters.googleblog.com/2012/08/website-testing-google-search.html

EpiserverEpiserver

Exercise A4 – Managing content

Estimated time: 30 minutes

Prerequisites: Exercises A1 – A2.

Personalizing, approving, and A/B testing content.

In this exercise, you will get an understanding of

how content approvals and marketing works in

the Episerver CMS. You will create a new page as

one user, and then approve it as a sequence of

other users. You will also perform A/B testing on

some content.

Module A – Getting Started with Episerver CMS

141

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 141

Episerver

Internationalization in .NET

143

The current thread has two properties, each are an instance of CultureInfo, for example:

Module A – Getting Started with Episerver CMS – Internationalization

// CurrentCulture must be specific because it affects data formats and sort order
Thread.CurrentThread.CurrentCulture = CultureInfo.GetCultureInfo("fr-CA");
decimal price = 19.99M;
DateTime when = new DateTime(2017, 12, 25);
string formattedPrice = price.ToString("c"); // => 19,99 $
string formattedDate = when.ToLongDateString(); // => 25 décembre 2017

// CurrentUICulture can be neutral because it only affects loading of localized strings
Thread.CurrentThread.CurrentUICulture = CultureInfo.GetCultureInfo("fr");
ResourceManager localizer = ...;
string saveButtonLabel = localizer.GetString("saveButton"); // => Enregistrer

using System.Globalization;
using System.Resources;
using System.Threading;

Internationalization terms

Internationalization (I18N): Describes the combination of globalization and localization.

Globalization (G11N): The process of making an app support different languages and regions.

Localization (L10N): The process of customizing an app for a given language and region.

Culture: A language and, optionally, a region. A locale is the same as a culture.

• Neutral culture: A culture that has a language, but not a region. (for example "en", "fr")

• Specific culture: A culture that has a language and region. (for example "en-US", "en-GB", "fr-CA")

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 143

Episerver

Internationalization in ASP.NET

144

In ASP.NET, the culture properties of the thread handling each HTTP request can be set in Web.config:

They can be set to auto, which will set values based on the HTTP request Accept-Language header:

Module A – Getting Started with Episerver CMS – Internationalization

<system.web>
<globalization culture="en-US" uiCulture="en" ...

<system.web>
<globalization culture="auto" uiCulture="auto" ...

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 144

Episerver

Internationalization in Episerver

145

Episerver adds a third concept, for content, and uses “language” instead of “culture”:

• System language (i.e. CurrentCulture). Used to control date/time formatting, sort order, and so on.

• User interface language (i.e. CurrentUICulture). Controls the localized (translated) resources to

display. Determines the language of the user interface, and any other place where calls are made to

retrieve and display localized texts.

• Content language. The preferred language when displaying content.

The rules for setting System and UI languages are:

1. For anonymous visitors, use the Content language.

2. For logged in users with profiles, use the personalized language selection for this user.

3. Use the appropriate setting from Web.config. If culture is set to auto, the language preferences

from the web browser are used.

Module A – Getting Started with Episerver CMS – Internationalization

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 145

Episerver

Content language selection

146

Content language is determined by the following

rules:

1. If specified, use the language in the URL.

2. If you are in the Edit view and have a language selected for preview, that language is used.

3. If specified, use the language associated with a host name.

4. If it exists, use the language defined by the cookie named epslanguage.

5. If the Web.config setting pageUseBrowserLanguagePreferences is true, then the language

preference from the web browser is used.

6. Fetch the setting from the uiCulture attribute on <globalization> in Web.config.

7. If nothing else is discovered, use the first enabled language branch as defined in Admin /

Language Branches, which means that it can be viewed as the default language.

Module A – Getting Started with Episerver CMS – Internationalization

Good practice is language visibility in the URL, either in

the path or the domain, because:

• Search engines, such as Google, must be able to

crawl a website and separate content.

• Users expect to cut and paste a link into an email

and send it to someone who can click the link getting

the same content.
http://www.episerver.fr/
http://www.episerver.com/fr/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 146

Episerver

Choosing a localization strategy

147

Module A – Getting Started with Episerver CMS – Internationalization

You can choose a single site (i.e. domain) with multiple language support using the first URL segment,

multisites with a domain for each language, or a hybrid approach:

Examples One domain Multiple domains i.e. sites

One language per domain

Multiple languages per

domain

alloy.com/contact-us

alloy.com/en/contact-us
alloy.com/se/kontakta-oss

alloy.com/contact-us
alloy.se/kontakta-oss

alloy.com/en/contact-us
alloy.com/se/kontakta-oss

alloy.ch/de/kontaktiere-uns
alloy.ch/fr/contactez-nous
alloy.ch/it/contattaci

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 147

Localization on the website is enabled in Web.config.

The setting is also visible under System Settings in

Admin (Config tab, System Configuration section).

Changing the system settings (including globalization)

from Admin is not recommended since it will (try to)

update the Web.config files, which will cause the

AppDomain to unload and reload, which is generally

bad, especially in a production environment.

Add the languages to be available for the website

with “Manage Website Languages” in Admin.

Choose Add Language to add a new language

Select a language and then select the Enabled

checkbox to enable a language on the website

Optionally: Set access levels if needed

Make the languages available for web editors with

the Language Settings in Edit view.

Fallback and replacement languages can be used to

display other languages for visitors on the website.

Episerver

Setting up localization of content

149

Module A – Getting Started with Episerver CMS – Internationalization – Localizing content

<episerver>
<applicationSettings

uiShowGlobalizationUserInterface="true" ... />

A
A

B

C

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 149

Functions for working with languages in Edit View

• All languages that are available for a site (set in “Manage Website Languages”) are by default listed in

the Sites tab/gadget in Edit View.

• Select “Show All Languages” in the Sites settings menu to see languages that are enabled for the site

but not yet available.

• You can toggle between the available languages using the View Settings button.

• All content, including blocks, can be in different languages.

Pages and Blocks are translated in the same way, with the option “Show content not in [currently selected

language]” available in the settings menu for the page tree and for the shared blocks gadget. This option

shows pages and blocks for all languages. Items that are not translated will have a language code

representing the fallback language visible in the list next to the name. When “Show Content Only in…” is

turned on, only content that is available for the current language (i.e. the language currently selected in

“Sites”) will be shown.

For detailed information on localizing content please see the Globalization section in the SDKs and user

guides.

Episerver

Working with a localized site

150

Module A – Getting Started with Episerver CMS –
Internationalization – Localizing content

Works with DXC Service Yes

Requires license No

Install-Package -ProjectName AlloyDemo EPiServer.Labs.LanguageManager

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 150

Episerver

Content areas and blocks on a localized site

• Language dependent content areas

vs.

• Language independent content areas.

• What does the [CultureSpecific] attribute do when applied to:

• A property of type string or XhtmlString?

• A property of type ContentArea?

Module A – Getting Started with Episerver CMS – Internationalization – Localizing content

151

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 151

We now have the possibility to use strict URL handling (for better SEO without duplicated content).

To switch back to use less strict routing
• There is a configuration setting strictLanguageRouting on configuration element applicationSettings

that can be set to false to get the more tolerant behavior that was default in previous versions of the

CMS.

Full article on routing changes
See http://world.episerver.com/Blogs/Johan-Bjornfot/Dates1/2013/12/Routing-changes-in-75/ for full

article on the above example and comparison to earlier versions of CMS.

Why do you not get a 404 when browsing the site root in a multi-language setup?
There is an exception for a request to the site root (i.e.path "/"), the reason being that it would be a very

unwanted behavior if the home page gave a 404 by default.

The language for the request will be decided from several different parameters:

• First: is there a language mapping for the site?

• Second: Is the attribute pageUseBrowserLanguagePreferences enabled in applicationSettings? If so a

check is made to see if the user has selected any language in the browser.

• Third: Is there a language mapping on *?

• If none of the above is set: Fall back to use uiCulture on the globalization element in web.config

This is documented in more detail the developer guide:

• http://world.episerver.com/documentation/developer-guides/CMS/globalization/

Episerver

Strict language routing

152

• As an example say that there is a page under start page named "News" in English and "Nyheter" in

Swedish.

• With the strict language routing the above URLs will be handled as follows:

• http://localhost/News/ => 404

• http://localhost/en/News/ => page in English

• http://localhost/sv/Nyheter/ => page in Swedish

• http://localhost/Nyheter/ => 404

• http://localhost/en/Nyheter/ => 404

• http://localhost/ => special case, not 404!

Module A – Getting Started with Episerver CMS – Internationalization – Localizing content

When not having language-host

mapping in config, language

segment must be present.

Language for page with URL segment

does not match language segment.

Works as long as uiCulture is

specified in Web.config.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 152

LocalizationService is used behind the scenes to localize the Episerver user interface, and your custom code.

Use the GetStringByCulture() method if you want the resource string for a specific language, and send in the

language in the form of a CultureInfo.

Configuration example from the Alloy site - Configuring a custom localization provider in Web.config:
<episerver.framework>

...
<localization

fallbackBehavior="Echo, MissingMessage, FallbackCulture" fallbackCulture="en">
<providers>
<add virtualPath="~/Resources/LanguageFiles"

name="languageFiles”
type="EPiServer.Framework.Localization.XmlResources.FileXmlLocalizationProvider,

EPiServer.Framework" />
</providers>

</localization>
...

</episerver.framework>

The default fallback behavior is to echo the key without a missing message.

Performance considerations: Please note that a large number of providers will impact the time needed to find

strings. Best performance is achieved with the least amount of providers.

Episerver

Localization service

154

Activating languages in the UI and translating page/block content is one side of localization…

…but what about translating text that isn’t content? That’s where the LocalizationService comes in.

• Namespace: EPiServer.Framework.Localization

• It is provider-based because:

• Remove the requirement to put XML files in a folder named ~\lang\ under the web root.

• Still support simple XML files in a web folder.

• Make it easier to create testable code that uses localization.

• Make the service replaceable and extendable.

• System localizations are embedded in the Episerver assemblies, but can be overridden.

• Alternative localization providers include a database-driven provider:
https://github.com/valdisiljuconoks/LocalizationProvider

Module A – Getting Started with Episerver CMS – Internationalization – Localizing content types

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 154

Episerver

Content types in code/admin

1. Initial content type display name

and description should be set in

code using [ContentType]

attribute. Values must be string

literal or constant expressions.

2. Admins can override using UI,

which updates the metadata in

the database. Admins can revert

back to the initial (code) values

by clicking Revert to Default

button.

3. Localization will override both.

Module A – Getting Started with Episerver CMS – Internationalization – Localizing content types

155

Copyright © Episerver AB. All rights reserved.

Page 155

Episerver CMS – Development Fundamentals

Episerver

Localization of content types and the Episerver user interface

To use automatic localization of the content

type metadata create one or more XML files

(with any names) in the ~\lang or

~\Resources\LanguageFiles folders.

You could create one file for everything in all

languages, or one file per feature and per

language, or any combination.

Create the XML as follows:
http://world.episerver.com/blogs/Linus-

Ekstrom/Dates/2013/12/New-standardized-format-for-content-

type-localizations/

Module A – Getting Started with Episerver CMS – Internationalization – Localizing content types

<?xml version="1.0" encoding="utf-8"?>
<languages>

<language name="English" id="en">
<contenttypes>

...

<language name="Dansk" id="da">
<contenttypes>

156

Override Episerver's default UI texts

Sometimes you may want to translate the EPiServer user interface to a currently unsupported language or just

want to change the text of some button or whatever.

https://getadigital.com/no/blogg/translating-episerver-ui/

https://ericceric.com/override-episervers-default-ui-texts/

Copyright © Episerver AB. All rights reserved.

Page 156

Episerver CMS – Development Fundamentals

Episerver

Localization of custom content types and properties

Underscored element names are custom content type names and property names defined by your site:

Module A – Getting Started with Episerver CMS – Internationalization – Localizing content types

<?xml version="1.0" encoding="utf-8"?>
<languages>

<language name="English" id="en">
<contenttypes>

<newspage>
<name>News</name>
<description>A news page describes recent events.</description>
<properties>

<eventlisting>
<caption>Event Listing</caption>
<help>A list of events.</help>

</eventlisting>

157

You can set default values for interfaces and base classes that will then be used by all custom types that

implement or inherit from them:

You can localize group/tab names like this:

<?xml version="1.0" encoding="utf-8"?>
<languages>

<language name="English" id="en">
<contenttypes>

<icontentdata>
<properties>

<disableindexing>
<caption>Disable indexing</caption>
<help>Prevents the content from being indexed by Google.</help>

<?xml version="1.0" encoding="utf-8"?>
<languages>

<language name="English" id="en">
<groups>

<sitesettings>Site Settings</sitesettings>
<eventinfo>Event Info</eventinfo>

Copyright © Episerver AB. All rights reserved.

Page 157

Episerver CMS – Development Fundamentals

EpiserverEpiserver

Exercise A5 – Internationalization

Estimated time: 45 minutes

Prerequisites: Exercise A1.

In this exercise, you will localize some content into

Swedish and Danish, including pages and blocks,

you will localize the TinyMCE toolbar styles drop-

down list, and you will configure a localization

provider and localize some of the content types

using language XML files.

Module A – Getting Started with Episerver CMS

158

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 158

EpiserverEpiserver

Exercise A6 – Resetting Admin account

Estimated time: 10 minutes

Prerequisites: Exercise A1.

In this exercise, you will add some code files to

reset the Admin account if you forget what

password you entered.

Estimated time: 15 minutes

Prerequisites: none.

In this exercise, you will identify the features that

existing Episerver websites have implemented.

Module A – Getting Started with Episerver CMS

159

Exercise A7 – Identifying website features

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 159

Episerver

Further study

160

The following are recommendations of what to self-study after completing Module A.

• Review the Notes sections underneath all the slides in Module A.

• Download and review the Episerver CMS Editor Guide:
http://webhelp.episerver.com/latest/_pdfs/episerver%20cms%20editor%20user%20guide.pdf

• Download and review the Episerver CMS Administrator Guide:
http://webhelp.episerver.com/latest/_pdfs/episerver%20cms%20administrator%20user%20guide.pdf

• Review the Episerver Forms documentation:
http://webhelp.episerver.com/latest/addons/episerver-forms/episerver-forms.htm

• Review the A/B testing documentation:
http://webhelp.episerver.com/latest/cms-edit/ab-testing.htm

Module A – Getting Started with Episerver CMS

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 160

Episerver

Module B

Defining Content
Types

Episerver CMS – Development Fundamentals

In this module, you will learn how to define content types with
properties, and how to render them with content templates. You

will learn about the important attributes that control how a content
type and its properties are registered with Episerver CMS.

161

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 161

Episerver

Module agenda

162

• Overview

• Defining page types and

templates

• Rendering properties

• Exercise B1 – Defining page

types and templates

• Defining media types and

templates

• Using folders

• Handling media

• Exercise B2 – Defining media

types and templates

Module B – Defining Content Types

• Advanced techniques

• Setting default values

• Available content types

• Implementing selection factories

• Implementing lists

• Exercise B4 – Creating page

types with a shared layout and

navigation

• Content type attributes

• Properties

• Settings and attributes

• Choosing a property type

• Validating properties

• Page template layouts

• Dependency injection

• Design patterns and conventions

• Exercise B3 – Implementing design

patterns and conventions

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 162

Episerver

What is content?

There are two minimum requirements to define a type of content in Episerver:

• Apply [ContentType] attribute and "implement" IContent

There are four main types of content built-in to Episerver CMS:

• Page: an instance of a class that derives directly or indirectly from PageData

• Folder: an instance of ContentFolder

• Media: an instance of a class that derives directly or indirectly from MediaData or its subclasses

ImageData and VideoData

• Block: an instance of a class that derives directly or indirectly from BlockData

• Episerver Forms use FormContainerBase which inherits from BlockData so forms are treated as

a special type of block

Module B – Defining Content Types – Overview

164

The following functionality is available for all content types in Episerver CMS

• Waste basket support, including moving, viewing and restoring from trash.

• Checking of references when deleting any content, that shows a dialog with links to affected content.

• Drag and drop support from the assets pane to any overlay or property that handles content

references or URLs.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 164

Episerver

Module B – Defining Content Types – Overview

165

Understanding content references and links

ContentReference has three properties that uniquely identify an item of content:

• ID: int

• WorkID: int (aka version ID)

• ProviderName: string (null if default, or custom provider name)

Every IContent type has two link properties:

• ContentLink: a reference to itself

• ParentLink: a reference to its parent page/folder

Every PageData has two more link properties:

• PageLink: a page reference to itself (deprecated)

• ArchiveLink: a page reference to where to move to when the page expires

Uses this format when output as a string: ID[_WorkID[_ProviderName]]

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 165

Episerver

Two extremes of website design

166

• Many pages, no blocks: some websites are designed

to have strict layouts for the pages by defining dozens

of specific page types with many simple data type

properties and views that output the property values

in fixed locations in the page template.

• Few pages, many blocks: Other websites are designed

to have very flexible layouts for the pages by having

only a few page types, with one general page type with

either a ContentArea or XhtmlString property to allow

the editor to add any combination of rich text, images,

and blocks designed to be used anyway without

restrictions.

Module B – Defining Content Types – Overview

As a general rule, make the start page and

any landing pages flexible by using content

areas and make all other pages more strict.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 166

Episerver

Content in Episerver: Pages

168

Content

CMS

Pages

StartPage

SearchPage

…and more

Blocks

TeaserBlock

LogoBlock

…and more

Folders Media

Commerce

Structure
Items

Catalogues

Categories

Leaf Items

Products

Shirt

...and more

Variants Bundles Packages

Module B – Defining Content Types – Defining page types and templates

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 168

The page type is available as a project item type in the Episerver CMS Visual Studio Extension.

Created from code:
• A .NET class that inherits EPiServer.Core.PageData

• Decorated with ContentType attribute

• Will be registered in the Episerver Database when the website is initialized

• Becomes the default MVC model passed into your page controller

Page types can also be created from Admin, but this is for legacy reasons and not recommended because

page types created in this way are not strongly typed. A strongly typed page type will have “From code” set to

“Yes” in Admin, while a page type created from Admin has no indication of being created from code, and the

page type name will be editable.

Episerver

What does Page Type item template give you?

Module B – Defining Content Types – Defining page types and templates

namespace AlloyDemo.Models.Pages
{

[ContentType(DisplayName = "StartPage",
GUID = "34942feb-7348-4e42-aaf9-1ff76b2be911", Description = "")]

public class StartPage : PageData
{

[CultureSpecific]
[Display(Name = "Main body", Prompt = "Enter a body",

Description = "The main body will be shown in the ...",
GroupName = SystemTabNames.Content,
Order = 1)]

public virtual XhtmlString MainBody { get; set; }

using System.ComponentModel.DataAnnotations; // [Display]
using EPiServer.Core; // PageData, XhtmlString
using EPiServer.DataAbstraction; // SystemTabNames
using EPiServer.DataAnnotations; // [ContentType], [CultureSpecific]

169

Required for a

content type

Required for a page type

Custom properties

are optional, but

must be public

and virtual

Some useful namespaces

are already imported

Add GroupName and Order

Add Prompt

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 169

A Page Template generates output for pages of a given type
A page template is responsible for rendering a page type. In Episerver a template defines which page types it

can render, not the other way around, which gives a clean separation of model and presentation and allows

for easier extensibility. In MVC, the template consists of a controller and a view, where the controller contains

the business logic and selects the view, and the view presents the content model.

When the strongly typed page type template is used, the rendering template will automatically be registered

as a supported template for the specified page type (T) as long as the naming has the following convention:

• Page type name = Models/Pages/<something>Page.cs (example: “StandardPage.cs”)

• Page type Controller name = Controllers/<something>Controller.cs (example:

“StandardPageController.cs”)

• Page type View name =Views/<something>Page/Index.cshtml (example:

“StandardPage/Index.cshtml”)

To make the template supported for all page types in the system, use EPiServer.Core.PageData as the generic

type (T).

Episerver

What does Page Controller (MVC) item template give you?

170

Module B – Defining Content Types – Defining page types and templates

namespace AlloyDemo.Controllers
{

public class StartPageController : PageController<StartPage>
{

public ActionResult Index(StartPage currentPage)
{

/* Implementation of action. You can create your own view
* model class that you pass to the view or
* you can pass the page type for simpler templates */

return View(currentPage);
}

using System.Web.Mvc; // ActionResult
using EPiServer.Web.Mvc; // PageController<T>
using AlloyDemo.Models.Pages; // StartPage

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 170

Suppressing compiler warning CS1702

The EPiServer assemblies are currently compiled for Microsoft.AspNet.Mvc 5.2.3 but you are probably using a

later version like 5.2.4. This causes compiler warnings when Razor views are open if they call Episerver

extension methods like PropertyFor()

Until Episerver releases new assemblies, you can suppress the CS1702 warning by adding the following to the

root Web.config:

Episerver

What does Page Partial View (MVC Razor) item template give you?

171

Although the item template is named “Partial” it is used to create both full and partial page views.

The most important thing is the file extension of .cshtml and the example of rendering a property using

the PropertyFor extension method.

Module B – Defining Content Types – Defining page types and templates

@using EPiServer.Core
@using EPiServer.Web.Mvc.Html

@model AlloyTraining.Views.StartPage.Index

<div>
@Html.PropertyFor(m => m.MainBody)

</div>

Change to AlloyTraining.Models.Pages.StartPage

Add all the other properties that you want to render

in the view in a similar way to this example.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 171

<system.codedom>
<compilers>
<compiler language="c#;cs;csharp"

extension=".cshtml"
compilerOptions="/nowarn:1702"
type="Microsoft.CSharp.CSharpCodeProvider, System, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"

warningLevel="4">
<providerOption name="CompilerVersion" value="v4.0" />
<providerOption name="WarnAsError" value="false" />

</compiler>
</compilers>

</system.codedom>

Episerver

Supporting ReSharper

172

Many developers use ReSharper make Visual Studio a better IDE by providing better code analysis,

generation, navigation, formatting, and refactoring.

In a default installation of ReSharper, it will show warnings about resolving templates, as described in

the following Stackoverflow post:

https://stackoverflow.com/questions/24104526/uihint-can-not-resolve-template-in-abstract-models

Other useful articles about Episerver and ReSharper:

• Creating EPiServer Page Types using ReSharper File Templates:
https://www.dcaric.com/blog/creating-episerver-page-types-using-resharper-file-templates

• Resharper templates for EPiServer properties:
https://www.dcaric.com/blog/resharper-templates-for-episerver-properties

Module B – Defining Content Types – Defining page types and templates

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 172

Episerver

Rendering properties using PropertyFor

174

To render a readonly property in the view (.cshtml):

To render a property with on-page edit (OPE) experience use the

Html.PropertyFor extension method:

When rendering a content area you can pass an anonymous object that

sets additional view data values, like a CSS class that will be set on the

wrapper <div> element:

Module B – Defining Content Types – Rendering properties

@Model.MainBody

@Html.PropertyFor(m => m.MainBody)

@Html.PropertyFor(m => m.MainContentArea, additionalViewData:
new { CssClass = "row", Color = "pink" })

To read the additional view data, use ViewContext.ParentActionViewContext.ViewData, as shown in

the following code:

~\Views\Shared_additionalViewData.cshtml

Inside a partial content template view:

Rendering a content area and passing some additional view data to all the partial templates:

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 174

<h4>additionalViewData</h4>

@foreach (KeyValuePair<string, object> item
in ViewContext.ParentActionViewContext.ViewData)

{
@item.Key: @item.Value

}

@Html.Partial("_additionalViewData")

@Html.PropertyFor(m => m.MainContentArea,
additionalViewData: new { CssClass = "row", Color = "pink" })

Episerver

Understanding DisplayFor, PropertyFor, and EditAttributes

Module B – Defining Content Types – Rendering properties

175

Output for Visitors

AlloyTraining.Models.Pages.StartPage
<h1>

@Model.Heading
</h1>
<h1>

@Html.DisplayFor(m => m.Heading)
</h1>
<h1>

@Html.PropertyFor(m => m.Heading)
</h1>
<h1 @Html.EditAttributes(m => m.Heading)>

@Html.DisplayFor(m => m.Heading)
</h1>

Output for Editors

A <div> inside an <h1> is invalid HTML so

using PropertyFor in this case is bad!

For visitors, PropertyFor simply calls Microsoft’s DisplayFor:

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 175

Null values
Episerver properties with an empty value are never stored in the database. If you access it from code, it will

always be null – not an empty string, 0 or false as you maybe expected. Why null? It is by design and is very

convenient if you want to check if something is not set by an editor or does not exist on this page. You just

have to compare with null regardless of data type.

Using fallbacks
Always use fallbacks when working with Episerver properties and especially when rendering them out to the

visitor (in inline code or code-behind). For example: in a page that has a user-defined property called Heading,

use the built-in property Name to display the name of the page if the Heading value is missing:

@(Model.Heading ?? Model.Name)

More information:
Best coding practices for Episerver properties: http://world.episerver.com/Articles/Items/Best-Coding-

Practices/

Because the <h1> tag is connected to the Heading property in the back-end it is the value of the Heading

property, not the Name, that will be updated when the editor makes changes to the property in Edit View.

More information:
A detailed version of this example can be found in the Episerver CMS Developer Guide:

http://world.episerver.com/documentation/developer-guides/CMS/Content/Edit-hints-in-MVC/

Episerver

Taking control of on-page editing using EditAttributes

176

@* Render the Heading property but if it’s empty render Name instead *@

<h1 @Html.EditAttributes(x => x.Heading)>

@(Model.CurrentPage.Heading ?? Model.CurrentPage.Name)

</h1>

Module B – Defining Content Types – Rendering properties

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 176

Episerver

Using multiple display templates for a property

177

When rendering a property, Microsoft’s DisplayFor extension method looks for the [UIHint] attribute

on a property, and if it exists, it will try to find a display template with a matching name.

• In the model i.e. content type:

• In the view:

Module B – Defining Content Types – Rendering properties

[UIHint("email")]
public virtual string Heading { get; set; }

@Html.DisplayFor(m => m.Heading)

@model string
@Model

[UIHint("h1")]

@model string
<h1>@Model</h1>

Since PropertyFor calls DisplayFor in Live view,

visitors can see properties rendered using display

templates. If you use EditAttributes, then call

DisplayFor manually to get equivalent behavior.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 177

EpiserverEpiserver

Exercise B1 – Defining page types and
templates

Estimated time: 45 minutes

Prerequisites: Microsoft Visual Studio 2015 or

2017 with Episerver CMS Visual Studio Extension.

Setting up the AlloyTraining site.

In this exercise, you will set up an Empty website

ready to extend throughout the rest of the training

course.

• Create a Start page type and template.

• Localizing content types for editors.

Module B – Defining Content Types

178

Troubleshooting problems with creating a new CMS project
The course environment in the classrooms on Episerver premises has a known working development tool

setup that is based on the system requirements for the product available on Episerver World.

If the course is run in another location the setup is likely to differ on development tool versions, access rights

etc. and this may cause problems when trying to create a new Episerver CMS website. Below are some useful

references with solutions to the most common setup issues:

• http://world.episerver.com/Blogs/Jeff-Wallace/Dates/2012/12/Visual-Studio-Extension--Error-When-

Creating-a-New-Site/

• http://world.episerver.com/Blogs/Eric-Pettersson/Dates/2012/12/Failed-to-register-URL-for-your-

website-when-using-VS2012-and-IIS-Express/

• The Windows user account that is logged in when creating the new website must be an administrator

in SQL Server in order to be able to create the new database. Check in SQL Management Studio

(under Security>Logins) that the windows account is present and has the Server Role “sysadmin”

selected.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 178

Episerver

Content in Episerver: Folders

180

Content

CMS

Pages

StartPage

SearchPage

…and more

Blocks

TeaserBlock

LogoBlock

…and more

Folders Media

Commerce

Structure
Items

Catalogues

Categories

Leaf Items

Products

Shirt

…and more

Variants Bundles Packages

Module B – Defining Content Types – Defining media types and templates – Using folders

EPiServer.Core.ContentFolder:

• Used to structure content and has no visual appearance on the site.

EPiServer.Core.ContentAssetFolder:

• Inherits from ContentFolder.

• Used to host assets related to a specific content item, e.g. For This Page and For This Block.

• Resources stored as content assets are to be seen as exclusive assets for that content instance and

hence the resources are not selectable from other content instances.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 180

A folder is an instance of EPiServer.Core.ContentFolder and is used to structure content. A content folder does

not have any visual appearance on the site.

Structures shared blocks
Shared blocks are structured with use of folders. A folder in the shared blocks structure can have other

folders or Shared Blocks as children. A Shared Block can not have any children. The editorial access is set on

the folders to specify which folders that should be available for the editor.

Multi-site support
There is a global folder root given by EPiServer.Core.ContentReference.GlobalBlockFolder that is the root

folder for Shared Blocks that should be available for all sites in an enterprise scenario. There is also a site

specific folder EPiServer.Core.ContentReference.SiteBlockFolder that contains the folder structure for shared

blocks that are site specific.

Episerver

Understanding folders

181

Instances of ContentFolder

• Used to structure assets (media, blocks, forms)

• Can have access rights

• Can be referenced

• Cannot be versioned or localized

• Do not have rendering templates by default

• Not displayed in the page tree or to the visitor

Instances of ContentAssetFolder

• For This Page or Block: the assets can only be

accessed by the owner page or block

Module B – Defining Content Types – Defining media types and templates – Using folders

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 181

Episerver

Content in Episerver: Media

183

Content

CMS

Pages

StartPage

SearchPage

…and more

Blocks

TeaserBlock

LogoBlock

…and more

Folders Media

Commerce

Structure
Items

Catalogues

Categories

Leaf Items

Products

Shirt

...and more

Variants Bundles Packages

Module B – Defining Content Types – Defining media types and templates – Handling media

The assets system is based on a typed model with support for the following property types:

• ContentReference property type with a UIHint “image” will be displayed and edited as an image.

• ContentReference property type with a UIHint “video” will be displayed and edited as a video.

• ContentReference property type with a UIHint “mediafile” will be displayed and edited as any file.

• Url property type with a UIHint “image” will be displayed and edited as an image.

• Url property type with a UIHint “video” will be displayed and edited as a video.

• Url property type with a UIHint “document” will be displayed and edited as any file.

A BLOB provider is also available, to make it possible to change storage model for media.

Detailed examples of the basic classes needed to support documents, images and video can be found in the

Alloy sample site.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 183

Episerver

Uploading media

184

To upload files to the Assets pane’s Media tab, at least

one class that inherits from MediaData is needed.

• No template is needed unless it should be possible to

render the media asset inside a content area.

• Dragging a MediaData into a XhtmlString:

• Dragging an ImageData into a XhtmlString:

• Dragging a VideoData into a XhtmlString:

Module B – Defining Content Types – Defining media types and templates – Handling media

[ContentType]
public class GenericFile : MediaData
{
}

[ContentType]
public class ImageFile : ImageData

notes.txt

<video src="siteassets/products/alloy-meet.mpeg" />
[ContentType]
public class VideoFile : VideoData

Media types do not support localization
A media asset has a language but it does not implement ILocalizable so it cannot have language branches.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 184

Be careful with the extensions that the media types support. If a media item is uploaded when the class has

one set of extensions and the extension is later removed, the previously uploaded media will be “broken” in

the UI.

Specialized media types

ImageData and VideoData are two specialized classes that allow the system to distinguish images and videos

from other generic media in order to apply special handling in the user interface. Both ImageData and

VideoData inherit from MediaData. If images or videos are types of media that editors need to deal with

regularly then creating content types for them is a good idea.

Media descriptor attribute

As you may have noticed in the ImageFile content type above, there is a MediaDescriptor attribute that

defines a list of file extensions. This attribute is used to associate specific file types to a given content type.

This allows the system to create content of the correct content type when a user uploads media via the user

interface.

When creating media content from the server side it is also possible to have this same content type resolving

by using the ContentMediaResolver class.

Episerver

What does Media Type item template give you?

185

Module B – Defining Content Types – Defining media types and templates – Handling media

namespace AlloyDemo.Models.Media
{

[ContentType(DisplayName = "Document",
GUID = "986e9212-fae8-462f-a598-7b8ca8dc3c20",
Description = "Use this to upload documents.")]

/*[MediaDescriptor(ExtensionString = "pdf,doc,docx")]*/
public class DocumentFile : MediaData
{

/*
[CultureSpecific]
[Editable(true)]
public virtual string Copyright { get; set; }

MediaDescriptor ExtensionString

defines the file extensions the

media type recognizes.

Custom template can be used by convention of naming Razor view to match model.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 185

EpiserverEpiserver

Exercise B2 – Defining media types and
templates

Estimated time: 30 minutes

Prerequisites: Exercise B1.

In this exercise, you will define some media

content types to enable a CMS Editor to upload

different media files.

Module B – Defining Content Types

186

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 186

Content type attributes are set in code on the strongly typed page types but can be overridden from Admin.

There is a function in Admin to revert overridden values to the default values set in the strongly typed page

type. It is available as a Revert to Default button on the Page Type Settings and Property Settings pages.

In this section of the course the most commonly used attributes are mentioned. The complete list of available

attributes and their default values are available in the CMS SDK, under Developer Guide > Content > Pages

and Blocks > Attributes.

Further information about working with a mix of code and Admin mode Page Type configuration:

• In the CMS SDK: Knowledge Base > Developer Guide > Content > Pages and Blocks > Synchronisation

• Blog article on Synchronisation of typed models, available on Episerver World:

http://world.episerver.com/Blogs/Per-Bjurstrom/Archive/2012/10/Synchronization-of-typed-models/

Episerver

Attributes used for content types

188

• [ContentType] attribute is required to register a content type

• Initial values for page type settings are set in code on the class

• GUID, DisplayName, GroupName, Description, Order

• Initial values can be overridden in Admin view

• Values entered from Admin view take precedence

• Revert to the values set in code by using Revert to Default:

Revert to Default will reset all changes made by administrators to that content type, including

properties, default values, and available page types, not just changes on the current tab.

Module B – Defining Content Types – Content type attributes

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 188

ContentType GUID
Always include a GUID on the page type (the Visual Studio Episerver template will generate one for you). The

GUID is the unique ID for the page type.

When renaming a content type class a new content type will be created as long as no GUID is specified in the

ContentType attribute of the class. If there is data on the old name, in other words if there are pages created

with the old name, then the old page type will remain and the old pages will use the old content type. When

viewing this content type in Admin under the Page Type or Block Type tab the old content type will be marked

as it is missing its code. If there is no data, the old content type will be deleted.

If a GUID is specified in the ContentType attribute and the GUID matches an existing content type it will be

renamed and any old data will use the renamed content type. The GUID of an existing content type is available

in Admin when editing the basic information for a content type.

When migrating a solution from CMS 6 to CMS 7 or later, it is possible to take the GUID from the CMS 6 page

type (found in the database) and add to the corresponding new strongly typed page type and the system will

recognise it and use it for the associated pages.

Episerver

ContentType, Access, and ImageUrl

189

Module B – Defining Content Types – Content type attributes

[ContentType(
DisplayName = "My content type",
Description = "Description for this content type",
Order = 1024,
AvailableInEditMode = true, // default is true
GUID = "E9802773-AAE7-44DC-822C-07797BE06855",
GroupName = "My group")]

[Access(
Users = "niis",
Roles = "CmsEditors")]

[ImageUrl("~/Static/gfx/page-type-thumbnail.png")]
public class TypedPageWithAttributeSample : PageData

A

A

B

B

C C

D

D
E

E

A

C

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 189

A property is a part of the content item which contains data of specific types, and is used to store and present

data. The type of property dictates what kind of values/content that can be entered or rendered.

Properties can be added to a page type through code (or from the administrative interface). In order for a

property to be rendered, it must be added to a page or block template that is linked to that particular block or

page type.

Properties on a page type can also be changed or created from Admin. Properties and property settings

created/updated from Admin:

• are not strongly typed

• are saved to the Episerver Database just like strongly typed properties

• overrides the strongly typed property/setting

Property Deprecated name Description

ParentLink Reference to the parent of this page.

ContentTypeID PageTypeID The ID for the Page Type that is being used for the page.

ContentLink PageLink Reference to the current page.

Name PageName The name of the page.

ContentGuid PageGuid

StartPublish Start publish date and time for the page. Nullable in CMS 10.

StopPublish Expiry date and time for the page. Nullable in CMS 10.

VisibleInMenu Determines if the page should be visible in menus.

LinkURL An internal GUID-based URL to the page.

ExistingLanguages PageLanguages Gets or sets the existing languages for this instance.

Language LanguageID,

LanguageBranch

Gets or sets the language for this instance.

Episerver

Content properties

191

Used to store and present data

• Contains data of a specific type

• Defined in the content type class

• Rendered in the content template

Two types of property:

• Built-in/inherited properties are pre-defined and set by the system when a content item is created.

• Examples: Name, ContentLink and StartPublish.

• Custom properties are added to the content type definition by the developer.

• Examples: Heading, MainIntro, and MainBody.

Module B – Defining Content Types – Properties

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 191

Episerver

Categorizing content

Episerver has a built-in concept of hierarchical categories, aka tags, that can be

associated with any content.

Module B – Defining Content Types – Properties

This property is on every page.

Category values are included in the Episerver Search index

for quick searches for content with that category value.

Listen to CRUD events with the ICategoryEvents interface.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 192

Episerver

Content type common custom developer-defined properties

Although the PageData class does not define them, an Episerver convention is to give pages the

following properties. Most developers familiar with Episerver will expect these two properties to exist so

you should create them:

• MainIntro: a string for an introduction to the page (often used as fallback for MetaDescription).

• MainBody: an XhtmlString for the main rich content property.

It would also be good practice to define properties for the <head> in a base page type:

• MetaTitle, MetaDescription, MetaKeywords: string

Module B – Defining Content Types – Properties

public virtual string MainIntro { get; set; }
public virtual XhtmlString MainBody { get; set; }

193

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 193

Default behavior if no attribute values are specified (attribute name in typed class in brackets):

• Name = the name of the property

• Value must be entered (Required) = false (i.e. value not required)

• Searchable property (Searchable) = true for strings, false for all other property types

• Unique value per language (CultureSpecific) = false (i.e. the property is Global by default)

• Display in Edit Mode (ScaffoldColumn) = true (i.e. visible by default)

• Field name (Display: Name) = the name of the property

• Help Text (Display: Description) is NULL

• Tab (Display: GroupName) is by default set to the Tab with the lowest sort order (which is the “Content”

tab if no custom tabs have been added)

• Sort index (Display: Order) defaults to the order the properties are written in the page type class

Episerver

Attributes used for properties

Module B – Defining Content Types – Properties – Settings and attributes

[Required]
[Searchable]
[CultureSpecific]
[ScaffoldColumn(true)]
[Display(

Name = "My Heading",
Description = "Heading description",
GroupName = "My Tab",
Order = 64)]

public virtual string Heading { get; set; }

195

Good practice

1. Name (aka Field name) and Description (aka Help Text) should

be overridden by localization.

2. GroupName should use a static class with string constants.

3. Order should be multiples of 10 or 100 to provide gaps for future.

https://tedgustaf.com/blog/2016/icon-for-property-help-texts-in-episerver/

https://talk.alfnilsson.se/2014/12/18/display-help-text-in-on-page-editing/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 195

Episerver

Grouping content types and properties using code

196

Define the group names in a class as string constants decorated with the attribute GroupDefinitions:

Use site tab name to put a property on that tab:

[Display(GroupName = SiteTabNames.Contact)]
public virtual string Phone { get; set; }

Module B – Defining Content Types – Properties – Settings and attributes

[EPiServer.DataAnnotations.GroupDefinitions]
public static class SiteTabNames
{

[Display(Order = 10)] // to sort tabs
[EPiServer.DataAnnotations.RequiredAccess(

EPiServer.Security.AccessLevel.Publish)]
public const string Contact = "Contact Info";

}

Since the tab names are just strings, a

developer could use a string literal instead,

and it would have the same effect.

Use SystemTabNames.PageHeader to move

a property to the basic information area.

GroupName corresponds to the tab where that property is contained in the All Properties view of the page.

Normally, these are defined as a list of constants that becomes available in the Display attribute.

The supporting attributes for group names such as GroupDefinitions and RequiredAccess are available from

Episerver CMS version 8.

An example of when you would like to set access on a group is when you have a “Site Settings” tab on the

start page (containing all the site-wide setup properties) and want to restrict it so that only a particular user

group can see and edit it.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 196

Tabs can be added from code, which is the preferred option, as discussed on the next slide.

You can however alter existing tabs and add your own tabs from Admin.

Episerver has predefined a static class with string constants for built-in tabs.

NOTE: You cannot use the administrative interface to edit groups that are defined in code.

Blog by Per Bjurström - http://world.episerver.com/blogs/Per-Bjurstrom/2015/2/typed-tabsgroups/

Episerver World - http://world.episerver.com/documentation/developer-guides/CMS/Content/grouping-

content-types-and-properties/

Episerver

Grouping properties using Admin view

197

CMS Admins can create, change, or set

access for the tabs from Admin view, but

only for tabs they create. Any tabs defined

in code cannot be edited or deleted.

We recommend:

• Properties that will be editable in On-Page

Editing view should be on the Content tab

and require Change access level.

• Properties that need higher access levels

should be on a separate tab and not be

editable in On-Page Editing.

Module B – Defining Content Types – Properties – Settings and attributes

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 197

Episerver

Supported .NET types

.NET Type Purpose Examples of common attributes

string Textual values in a single-line text box or a

multi-line text area of varying lengths and

matching a pattern.

[UIHint(UIHint.Textarea)]
[StringLength(50, MinimumLength = 5)]
[RegularExpression("[a-zA-Z]+")]

bool true/false values with check box editor.

DateTime? Date and time value with graphical picker.

double? Floating point number value. [Range(2.5, 7.5)]

int? Whole number value or enum value

entered into a text box.

[Range(18, 65)]

Module B – Defining Content Types – Properties – Choosing a property type

199

Make value types nullable except bool because a nullable bool only returns true or null!

byte, short, long, float, and decimal and their nullable equivalents are not supported by default.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 199

Episerver

Episerver common types

Episerver Type Purpose Examples of common attributes

XhtmlString Rich text, image media, and blocks.

Url A link to a page, media, email, or

external URL, including query strings.

// show type-specific UI
[UIHint(UIHint.Image
/Video/MediaFile)]

LinkItemCollection A collection of Urls.

CategoryList One or more category values.

PageType Select a registered page type.

XForm Old technology for allowing CMS

Editors to design forms for gathering

data from visitors. Use Episerver

Forms instead.

Module B – Defining Content Types – Properties – Choosing a property type

200

Every page already has one CategoryList
type property named Category but you

could use this to add more, or add a

property to a custom content type.

The most common property types are described in detail in the developer guide

under Content > Properties.

Some examples of usage:

• Long string: Any non-HTML string properties such as Headings,

introductions, shorter editorial texts without HTML.

• XHTML string (>255): Text that needs to include HTML formatting. Can

contain links.

• Link collection: Links in a footer, link list in an article or blog.

• Page or content reference: For example Start node for news archive or a

Contact Us page.

• URL to Image: Logotype. When you want the editor to include one image

in one specific place.

• Selected/not selected: Is NULL or true, never false.

• XForms form: A “contact us” form or a simple voting function.

• PageType: if the Editor needs to choose one of the registered page types

from a dropdown list.

• BLOB: Used to hold binary data (for example an image). A BLOB can be

routed to with pattern <Url to content>/BlobPropertyName.

Recommendations when using string properties: In earlier versions of Episerver

CMS the built in property type PropertyString (”String (<=255)”) was preferred

for shorter strings (for example headings, titles and names used in menus).

Upgraded sites might therefore still use it and it will still work, but the

recommendation is to use PropertyLongString (”Long string (>255)”) for any

non-HTML string properties. Refer to the section “Using string properties” in the

Episerver CMS SDK for more information.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 200

Episerver

Episerver content reference types

Episerver Type Purpose Examples of common attributes for all these types

ContentReference
or PageReference

A reference to one content

item or one page.

// allow standard pages
// but not product pages
[AllowedTypes(typeof(StandardPage),

RestrictedTypes =
new[] { typeof(ProductPage) })]

// allow blocks and employee pages
[AllowedTypes(typeof(BlockData),

typeof(EmployeePage))]

// show file type-specific UI
[UIHint(UIHint.Image/Video/MediaFile)]

ContentArea An ordered collection of

references to blocks, media,

and pages (rendered using

their partial template).

IList
<ContentReference>

A list of references to

content items.

Module B – Defining Content Types – Properties – Choosing a property type

You cannot have an IList<PageReference>.

201

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 201

Behavior if no attribute values are specified:

• StringLength = No length restriction

• RegularExpression = No validation of the input

• Range = numeric properties. No validation of range except the minimum/maximum values for the

value type (For instance Int32.MinValue and Int32.MaxValue)

Episerver

Validating a single property using Microsoft attributes

203

Module B – Defining Content Types – Properties – Validating content

[StringLength(20, MinimumLength = 2,
ErrorMessage = "The heading must contain between 2 and 20 characters")]

public virtual string Heading { get; set; }

[RegularExpression("^[A-Z0-9]+$")]
public virtual string ProductCode { get; set; }

[Range(18, 150, ErrorMessage = "You must be over 18 to enter")]
public virtual int Age { get; set; }

[EmailAddress]
public virtual string Email { get; set; }

[Compare("PasswordReentered")]
public virtual string Password { get; set; }
public virtual string PasswordReentered

{ get; set; }

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 203

Episerver

Validating a single property using a custom attribute

public class OperaYearAttribute : ValidationAttribute
{

public OperaYearAttribute()
{

ErrorMessage = "The first opera ever written was performed in 1597 in Florence in
Italy. It was called Dafne and the composer was Jacopo Peri.";

}

public override bool IsValid(object value)
{

if (!(value is int)) return false;
return ((int)value) > 1597;

}

}

Module B – Defining Content Types – Properties – Validating content

[OperaYear]

public virtual int OperaWritten { get; set; }
204

The following alternative example inherits from ValidationAttribute and overrides the IsValid method that

returns a ValidationResult instead of a Boolean:

[MyCustomValidation]
public virtual string Heading { get; set; }

public class MyCustomValidationAttribute : ValidationAttribute
{

protected override ValidationResult IsValid(object value, ValidationContext validationContext)
{

if (value.ToString().Contains("notallowed"))
{

return new ValidationResult("This is not allowed");
}
return ValidationResult.Success;

}
}

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 204

Episerver

Validating properties using an Episerver content validator

public class EmployeePageValidator : IValidate<EmployeePage>
{

public IEnumerable<ValidationError> Validate(EmployeePage instance)
{

var errors = new List<ValidationError>();
if(instance.HireDate < instance.BirthDate) {

errors.Add(new ValidationError {
PropertyName = "HireDate",
ErrorMessage = "An employee cannot be hired before they are born!",
Severity = ValidationErrorSeverity.Warning,
RelatedProperties = new[] { "BirthDate" }

});
}
return errors; // return an empty list if validation is okay

}

Module B – Defining Content Types – Properties – Validating content

205

The generically-bound content

type is automatically registered.

Validation occurs whenever a

change is about to happen to

an instance of this content type.

using EPiServer.Validation;

If you need more complex validation, for example that the value of one property should be validated

depending on the value of another property, then you can implement EPiServer.Validation.IValidate<T> (where

T is the type to validate). No registration is needed, the initialization scanning will register all implementations

automatically.

The validator will be called during Save for each content instance that can be assigned to T. Note however

that this validation will be done on server side only.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 205

Episerver

Validating multiple properties using an event handler

206

Developers can handle system-level events, like an item of content is about to be published:

When the event is triggered, the handler method can prevent it by setting CancelAction to true:

Module B – Defining Content Types – Properties – Validating content

events.PublishingContent += Events_PublishingContent;

private void Events_PublishingContent(object sender, EPiServer.ContentEventArgs e)
{

if ((e.Content as PageData).Name.ToLower().Contains("bad word"))
{

e.CancelAction = true;
e.CancelReason = "Content names cannot contain \"bad word\".";

}
}

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 206

Using layouts
MVC looks for ~/Views/_ViewStart.cshtml when a developer calls the View() method in a controller (but not

when a developer calls PartialView() method). _ViewStart.cshtml can be used to set a default layout for views.

If you want a specific view to use a different Layout, you can set it in the top of the specific view:

@{

Layout = "~/Views/Shared/Layouts/_Root.cshtml";

}

Also, you can set Layout = null; if this page does not need a layout.

Anything in the view not wrapped in a @section NameOfSection { } block will go into the

@RenderBody()

Anything in the view wrapped in a @section NameOfSection { } block will go into

@RenderSection(”NameOfSection”) { }

Episerver

Sharing page structure with MVC layouts

208

Views often use MVC layouts in order to get consistency in describing layout and content.

• A default layout should be set in _ViewStart.cshtml

Module B – Defining Content Types – Page template layouts

Layout

Adver

t
Nav

Other

Footer

Page-specific

content

Fused MVC Page

Advert

Nav

Other

Footer

Episerver

Developer

courses!

Read all about it!

View

Episerver

Developer

courses!

Read all about it!

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 208

Episerver

Improving search engine optimization (SEO)

209

CanonicalLink extension method

• Ensure that there is only one canonical content URL from a search engine perspective.

• Canonical links will always display the primary host name (or relative on the primary host name

itself).

AlternateLinks extension method

• Shows alternate languages for the page.

For example, a request for the root path /, returns HTML response with following in <head>:

Module B – Defining Content Types – Page template layouts

@Html.CanonicalLink()
@Html.AlternateLinks()

</head>

<link href="/en/" rel="canonical" />
<link href="/en/" hreflang="en" rel="alternate" />
<link href="/sv/" hreflang="sv" rel="alternate" />

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 209

When and why you should use required client resources
It is possible to require certain client resources to be rendered on the page in a specific area. Usually this

approach is used when developing modules, add-ons and various plug-ins when the developers cannot access

and modify the site templates to add client resources directly.

Good Practice
Any template must be able to render required client resources at least for the two default areas. Resources for

the Header area should be rendered inside the <head> tag. Resources for the Footer area should be rendered

in the bottom of the page, before the closing </body> tag. This is best practice to enable Episerver CMO, Live

Monitor and other modules and add-ons that require script and style injections on pages.

Episerver

Requiring client resources

210

Module B – Defining Content Types – Page template layouts

http://world.episerver.com/documentation/developer-guides/CMS/client-resources/

<!-- module.config -->
<module>
<clientResources>

<add name="epi.samples.Module.Styles"
path="ClientResources/Styles.css" resourceType="Style"/>

<!-- Index.cshtml -->
@using EPiServer.Framework.Web.Resources
@{

ClientResources.RequireScript(Href("~/static/jwplayer/jwplayer.js"));
ClientResources.RequireStyle(epi.samples.Modules.Styles);

}

<!-- _Layout.cshtml -->
<head>

<!-- other resources -->
@Html.RequiredClientResources("Header")

</head>
<body>

<!-- other markup -->
@Html.RequiredClientResources("Footer")

</body>

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 210

Episerver

Understanding Episerver CMS APIs

Module B – Defining Content Types – Dependency injection

In pre-7 versions, Episerver CMS was more of a

Page Management System. Types and members

included PageData, PageReference, and PageName.

Since version 7, it has been refactored to be more of a true Content

Management System. New types and members include IContent,

ContentData, ContentReference, and Name.

The old DataFactory has grown too big so should be avoided for performance and unit testing.

Services that implement smaller sets of functions should be used instead.

The two most common are:

• IContentLoader: read-only access to Epi database.

• IContentRepository: full CRUD access to Epi database.
212

Other Episerver interfaces and types for services

IContentTypeRepository: CRUD with content types in Episerver database.

IContentVersionRepository: list and delete content versions in Episerver database.

IContentEvents: listen for events during CMS lifecycle, e.g. publishing a page.

IPageCriteriaQueryService: search for content in Episerver database (not indexed).

UrlResolver: convert content reference to public URL and other tasks.

LocalizationService: read localized strings from XML files (or custom provider).

DisplayOptions: allow editor to customize which template is used for a block.

Dependency injection

http://world.episerver.com/documentation/developer-guides/CMS/initialization/dependency-injection/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 212

Episerver

Getting a service using the locator or using Injected<T> field

1. ServiceLocator.Current.GetInstance<T>: manually retrieve the provider for the service T.

2. Injected<T>: define a field that will be automatically instantiated.

Module B – Defining Content Types – Dependency injection

private Injected<IContentLoader> injectedLoader;

public void SomeMethod()
{

var pages = injectedLoader.Service
.GetChildren<PageData>(ContentReference.StartPage);

}

IContentLoader loader = ServiceLocator.Current.GetInstance<IContentLoader>();
var pages = loader.GetChildren<PageData>(ContentReference.StartPage);

213

Strictly-speaking, ServiceLocator is not DI, and should be avoided, as explained in the following article:
http://marisks.net/2016/12/01/dependency-injection-in-episerver/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 213

Episerver

Getting a service using constructor parameter injection

3. SomeController(T param): constructor parameter injection.

Warning! This third option requires a dependency resolver like StructureMap to be configured.

This is the best option for making it easy to unit test and remove dependencies.

Module B – Defining Content Types – Dependency injection

private readonly IContentLoader loader = null;

public MuppetPageController(IContentLoader loader)
{

this.loader = loader;
}
public void SomeMethod()
{

var pages = loader.GetChildren<PageData>(ContentReference.StartPage);
}

214

You will use IContentLoader like this in Exercise B3 to automatically

generate a menu by getting the children of your start page.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 214

Episerver

Getting a service in an initialization module

4. Initialization modules do not allow constructor parameter injection, so you could use the

initialization engine’s Locate.Advanced object instead:

Module B – Defining Content Types – Dependency injection

private IContentLoader loader = null;
private IContentEvents events = null;

public void Initialize(InitializationEngine context)
{

this.loader = context.Locate.Advanced.GetInstance<IContentLoader>();
this.events = context.Locate.Advanced.GetInstance<IContentEvents>();

}

215

Copyright © Episerver AB. All rights reserved.

Page 215

Episerver CMS – Development Fundamentals

Episerver

Sharing properties between content types, and action methods between controllers

When you create your own site, use Site as a prefix for types that extend the built-in Episerver API

types. For example:

• Episerver has content types PageData, BlockData, and MediaData. Create derived types named

SitePageData and so on with properties that will be common to all pages and so on in your site.

Microsoft has a convention of using Base as a suffix for abstract classes that they expect other

developers to derive from. You can do the same. For example:

• Episerver has a type named PageController<T>. Create a derived type named

PageControllerBase<T> with methods that will be common to all page templates on your site.

Module B – Defining Content Types – Design patterns and conventions

217

An alternative to having a base controller is to have a separate non-Episerver MVC controller

for common action methods. For example: SiteController with LogOff action method.

Example of a base controller for shared action methods:

Example of a separate controller for shared action methods:

Copyright © Episerver AB. All rights reserved.

Page 217

Episerver CMS – Development Fundamentals

using AlloyTraining.Models.Pages;
using EPiServer.Web.Mvc;
using System.Web.Mvc;
using System.Web.Security;

namespace AlloyTraining.Controllers
{

public abstract class PageControllerBase<T> : PageController<T> where T : SitePageData
{

public ActionResult Logout()
{

FormsAuthentication.SignOut();
return RedirectToAction("Index");

}
}

}

using System.Web.Mvc;
using System.Web.Security;

namespace AlloyTraining.Controllers
{

public class SiteController : Controller
{

public ActionResult Logout(string returnUrl)
{

FormsAuthentication.SignOut();
return Redirect(returnUrl);

}
}

}
Log out

Log out

Episerver

Setting icons for content types

Episerver has an attribute named ImageUrlAttribute. Create a derived type named

SiteImageUrlAttribute that has a default constructor that sets the path to a default

image file:

Apply this attribute to your content type classes to show a default icon:

Module B – Defining Content Types – Design patterns and conventions

218

public class SiteImageUrlAttribute : ImageUrlAttribute
{

public SiteImageUrlAttribute()
: base("~/Static/contenticons/epi-edu-icon.jpg") { }

public SiteImageUrlAttribute(string path)
: base(path) { }

}

[SiteImageUrl]
public class StartPage : SitePageData

120

90

CONTENT ICONS FOR EPISERVER
A collection of 87 icons for EPiServer 7+ CMS content types.

https://www.markeverard.com/2014/11/17/content-icons-for-episerver/

Copyright © Episerver AB. All rights reserved.

Page 218

Episerver CMS – Development Fundamentals

Episerver

Defining site group and tab names

219

It is good practice to avoid “magic” strings in your code. ContentType and Display attributes both allow

you to specify a GroupName as a string value.

You should define a static class with string constants instead of just setting literal string values.

The recommendation is to define your own

SiteTabNames and SiteGroupNames static classes.

Module B – Defining Content Types – Design patterns and conventions

namespace AlloyTraining
{

public static class SiteGroupNames
{

// this will be used for Start and Search pages
public const string Specialized = "Specialized";
// this will be used for all other pages
public const string Common = "Common";

namespace AlloyTraining
{

public static class SiteTabNames
{

// used for Meta properties
public const string SEO = "SEO";

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 219

namespace AlloyTraining
{

public static class SiteGroupNames
{

// this will be used for Start and Search pages
public const string Specialized = "Specialized";

// this will be used for all other pages
public const string Common = "Common";

// this will be used for News Landing and Article pages
public const string News = "News";

}
}

using EPiServer.DataAnnotations;
using EPiServer.Security;
using System.ComponentModel.DataAnnotations;

namespace AlloyTraining
{

[GroupDefinitions]
public static class SiteTabNames
{

[Display(Order = 10)]
[RequiredAccess(AccessLevel.Edit)]
public const string SEO = "SEO";

[Display(Order = 20)]
[RequiredAccess(AccessLevel.Administer)]
public const string SiteSettings = "Site Settings";

}
}

Episerver

Using view models

220

Frequently you need more than just the page object in your view, so it is common to create a view

model class. Create an interface and use inheritance so that your strongly-typed models can be

passed to your layouts as well as the views.

Interface and base class:

_Layout.cshtml:

StartPage\Index.cshtml:

Module B – Defining Content Types – Design patterns and conventions

public interface IPageViewModel<out T> where T : SitePageData
{

T CurrentPage { get; }

public class PageViewModel<T> : IPageViewModel<T> where T : SitePageData

@model IPageViewModel<SitePageData>

@model PageViewModel<AlloyDemo.Models.Pages.StartPage>

An alternative to having a view model is to decorate properties with the [Ignore] attribute. This prevents

them from being stored in the CMS. But beware of caching!

http://blog.q1.se/2016/03/08/rule-of-thumb-never-have-ignore-properties-in-a-contenttypemodel/

More information:
To use View Model or not to use View Model:

http://joelabrahamsson.com/episerver-and-mvc-what-is-the-view-model/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 220

Episerver

Understanding feature folders

221

By default in an ASP.NET MVC or Episerver CMS project, Visual Studio

structures your code files by technical concerns, i.e. it puts all your controller

classes together in the Controllers folder, and all your content type classes

together in the Models folder. This breaks the good practice of “files that

change together should be stored together.”

A more natural way of working is to structure your code files by feature

concerns, i.e. put all the code files for a feature like a shopping cart together

in a Cart folder. Structuring files around a feature makes it easier to modify

that feature. For example, when adding a property to a page type, it is

necessary to also change related files like the page controller and view.

Module B – Defining Content Types – Design patterns and conventions

Copy the Views/_ViewStart.cshtml and Web.config

into the Features folder to enable Razor support.

“Feature Folders” structure in ASP.NET MVC
http://haselt.com/feature-folders-structure-in-asp-net-mvc/

http://kurtdowswell.com/software-development/asp-net-core-mvc-feature-folders/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 221

EpiserverEpiserver

Exercise B3 – Implementing design
patterns and conventions

Estimated time: 45 minutes

Prerequisites: Exercises B1 and B2.

In this exercise, you will create a layout file which

will be used up by all page templates in the

website, a base page type that will be inherited

from by all the page types in the site, a base page

controller that will be inherited from by all the

page templates in the site, and a view model to

make our Views and Layouts more flexible.

Module B – Defining Content Types

222

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 222

If the property is not found, the indexer returns null.

Looping through the properties in the currentPage.Property dictionary will only return the page-specific

properties, not properties in shared blocks on the page.

EPiServer.Core has an extension method GetPropertyValue() that is beneficial to use when working

with non-strongly-typed content. The method and its overloads handle null checks and type validation

Example: currentPage.GetPropertyValue(“MyProperty”)

Examples with fallback

If a string must be returned use a fallback value as follows:

• string s = currentPage.GetPropertyValue("StringProperty“, string.Empty);

Getting typed values:

• DateTime date = currentPage.GetPropertyValue<DateTime>("DateProperty", DateTime.Now);

• int i = currentPage.GetPropertyValue<int>("IntegerProperty", 0);

• bool b = currentPage.GetPropertyValue<bool>("B", false);

Another fallback in the markup using the ?? operator:

• currentPage["Heading"] ?? currentPage.Page

Using a fallback value in an overload of the GetPropertyValue extension method:

• string pageHeading = currentPage.GetPropertyValue("PageHeading", currentPage.Name);

More information

Magnus Rahl has written a blog post on Episerver World about the property return types and how they have

changed and how to work with non-strongly-typed property values: http://world.episerver.com/Blogs/Magnus-

Rahl/Dates/2012/10/Upgrading-vs-property-return-type-changes-in-Episerver-7/

Episerver

Accessing page properties using the Property indexer

224

Page properties can be accessed by using the indexer provided by the Property property:

public ActionResult Index(NewsPage currentPage)
{

PropertyData headingProperty = currentPage.Property["Heading"];
string heading = currentPage.Property["Heading"].Value as string;
object headingUsingIndexer = currentPage["Heading"];

}

Older CMS versions without strongly-typed classes must use this to work with properties.

Module B – Defining Content Types – Advanced techniques

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 224

UIHint is used to select either editor/renderer or both by defining a hint string. You can use the enumeration

EPiServer.Web.UIHint to use hints for known types in the system, for instance UIHint.Image.

Episerver CMS – Advanced Development training course covers how to define your own SiteUIHint enum

with custom editors.

UIHint.BlockFolder and UIHint.MediaFolder are deprecated in CMS 11. Use UIHint.AssetsFolder

instead.

UIHint.LongString is deprecated in CMS 11. Use UIHint.Textarea instead.

Episerver

Altering the editors experience for a property with UIHint

225

UIHint is both an attribute defined by Microsoft…

…and a static class with string constants defined by Episerver:

Use them to change the editor used for the property in All Properties view:

Module B – Defining Content Types – Advanced techniques

namespace EPiServer.Web
{

public static class UIHint
{

public const string Image = "image";
public const string Textarea = "textarea";

namespace System.ComponentModel.DataAnnotations
{

public class UIHintAttribute : Attribute

[UIHint(UIHint.Textarea)] // multi-row text editor
public virtual string MetaDescription { get; set; }

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 225

Episerver CMS provides many built-in data types for properties. It is also possible to create your own

customized property types.

Customized property types can be implemented in the following ways:

• Use an existing property type as a base and change its behavior

• Create a custom property type from scratch

More information:
Validating property values, change rendering and change editing: http://world.episerver.com/Blogs/Linus-

Ekstrom/Dates/2012/12/Changes-for-properties-between-Episerver-6-and-7/

Advanced:

Configuring editors for your properties: http://world.episerver.com/blogs/Linus-

Ekstrom/Dates/2013/12/SingleMultiple-selection-in-Episerver-75/

Custom renderers for properties: http://world.episerver.com/Blogs/Linus-Ekstrom/Dates/2012/10/Custom-

renderers-for-properties/

Episerver

Defining custom property types

226

Customized: create your own

• Use existing property type as a base, for example, LongStringProperty, and then serialize with an

efficient format like JSON.

• Create custom property type from scratch.

Two alternatives:

• Use a block type (see Module D – Working with Blocks)

• Use UIHint instead of custom property type if you only want to change the rendering or editing of a

property.

Module B – Defining Content Types – Advanced techniques

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 226

Episerver

Converting pages between types

227

• Converts pages from one page type to another

• Map page properties

• The system tries to match the page properties when

the destination page type is selected.

• If a Page Property does not exist on the

destination Page Type, the option “Remove property

permanently” will be selected

• WARNING: You cannot undo a conversion. Content in the

database may be removed permanently. Backup your

database before performing the conversation. Also run

a test conversion to determine whether an undesirable

action might occur.

Module B – Defining Content Types – Advanced techniques

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 227

Episerver

Good practice for page types and their properties

228

• Limit the available pages types to only those required.

• Order page types in an appropriate group.

• Populate default values in fields to help the editors.

• Order properties in an appropriate tab (group).

• Hide tabs of properties that the editors should not use by requiring an access level.

• Predefine format for text, images, tables to help the Editors.

• Set page type setting values from code, only use Admin to edit settings if absolutely necessary and if

the change is temporary.

Module B – Defining Content Types – Advanced techniques

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 228

Setting default values for custom properties

Navigate to CMS | Admin | Content Type, click on a content type, and click one of its properties, for example

the Heading property:

Episerver

Setting default values in Admin view

230

• Start Publish Date

• Add n minutes, hours or days to Created date/time

• Stop Publish Date

• Add n minutes, hours or days to Created date/time

• Display in navigation: can be used to generate menus.

• Sort index: affects how it is sorted within its parent.

• Sort subpages

• Alphabetically, by sort index, or by create, change, publish

date, ascending or descending.

• Archive to: a page to move to when it expires.

• Target Frame: rarely used these days.

Module B – Defining Content Types – Advanced techniques – Setting default values

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 230

The default property values specified in code will be applied to all new pages created from that page type, but

defaults for the built-in properties are not visible on the Default Values tab in Admin.

The default value is usually an “empty” value, but not null, for example, zero (0) for a number value type

property or an empty string for a string value type property.

A detailed example of setting default values for a content type can be found in Alexander Haneng’s blog on

Episerver World: http://world.episerver.com/Blogs/Alexander-Haneng/Dates/2012/9/How-to-define-default-

values-for-pages-and-blocks-in-Episerver-CMS-7/

Episerver

Setting default values in code

231

Module B – Defining Content Types – Advanced techniques – Setting default values

[ContentType]
public class NewsPage : PageData
{

public virtual string Heading { get; set; }

public override void SetDefaultValues(ContentType contentType)
{

base.SetDefaultValues(contentType); // always call base implementation first

VisibleInMenu = false; // setting built-in properties
StopPublish = DateTime.Now.AddDays(60);
this[MetaDataProperties.PageChildOrderRule] = Filters.FilterSortOrder.Index;
Heading = "Welcome!"; // setting custom properties

}

Default values set in Admin view are applied after

the SetDefaultValues method and will override

any default values set in code.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 231

Episerver

Available Page Types – Admin view

233

• Default is All, i.e. all page types are available.

• Means that a page that is created beneath the current

page can be based on all possible page types.

• Switching to Selected makes it possible to choose which

page types may be created beneath the current page type.

• Simplify the work of editors by limiting the list to pick from.

• In the screenshot, only News Page, Product, and Standard

Page can be created as children of Standard Page.

• Admin view only allows control over children; in code you

can control children and parent page types.

Module B – Defining Content Types – Advanced techniques – Available content types

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 233

Default behavior: If no AvailableContentTypes attribute is specified for a page type, the default behavior is for

the page type to be included on all page types that does not specifically exclude it.

The types given on AvailableContentTypes attribute can either be a typed page (that is a type inheriting

PageData) directly or it can be the type of an interface or a base class. At registration all registered types that

can be assigned to the specified type will be included. So if for example an interface is specified in the Include

list then all typed pages that implement the interface will be included.

Episerver

AvailableContentTypes – Allow using Include

234

Module B – Defining Content Types – Advanced techniques – Available content types

[AvailableContentTypes(Availability = Availability.Specific, // optional
Include = new[] { typeof(StandardPage), typeof(ProductPage) })]

public class StandardPage : PageData

inherits from StandardPage

Include = allowed child types (and

implicitly restrict all other types)

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 234

IncludeOn differs from Include in the way that it is not excluding. That is, for types in IncludeOn that has all

page types available no page types will be excluded. Include on the other hand will exclude all typed pages

except the ones given in Include.

Episerver

AvailableContentTypes – Allow using IncludeOn

235

Imagine that a class library assembly defines two page types, PageA and PageB.

PageA only allows pages of type PageB as children, all other page types are implicitly excluded:

You have referenced this assembly in your Episerver CMS project, and you want to define a new page

type, PageC, that should also be createable as a child of PageA. But you can’t add to the list of Include

types for PageA because it’s a compiled assembly. Instead, you can use IncludeOn for your new class:

Module B – Defining Content Types – Advanced techniques – Available content types

[AvailableContentTypes(Include = new[] { typeof(PageB) })]
public class PageA : PageData

Include = allowed child types (and

implicitly restrict all other types)

IncludeOn = allowed parent types

[AvailableContentTypes(IncludeOn = new[] { typeof(PageA) })]
public class PageC : PageData

public class PageB : PageData

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 235

Exclude works so that if no types are set on Include then the result will be that all registered page types except

the Excluded ones are available. If there are types registered in Include then all types in Include except the

ones in Exclude are available.

ExcludeOn states that the page with this attribute should be not available under the any of the typed pages in

the type array.

Episerver

AvailableContentTypes – Restrict using Exclude and ExcludeOn

236

Module B – Defining Content Types – Advanced techniques – Available content types

[AvailableContentTypes(Availability = Availability.Specific,
Include = new[] { typeof(StandardPage), typeof(ProductPage) },
Exclude = new[] { typeof(ArticlePage) },
ExcludeOn = new[] { typeof(StartPage) })]

public class TypedPageWithAttributeSample : PageData

Exclude = restricted child types (and

implicitly allow all other types if not

implicitly excluded by Include)

ExcludeOn = restricted parent types

Exclude overrides Include

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 236

Episerver

Understanding selection factories

238

By default, a property of type string uses a single-line text box as the editing experience:

We can use a selection factory to change it into a dropdown list…

…or multiple check boxes:

Module B – Defining Content Types – Advanced techniques – Implementing selection factories

[Display(Name = "Work status")]
public virtual string WorkStatus { get; set; }

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 238

Episerver

Implementing a selection factory

239

Module B – Defining Content Types – Advanced techniques – Implementing selection factories

using EPiServer.Shell.ObjectEditing;
using System.Collections.Generic;

public class WorkStatusSelectionFactory : ISelectionFactory
{

public IEnumerable<ISelectItem> GetSelections(ExtendedMetadata metadata)
{

return new List<ISelectItem>
{

new SelectItem { Value = "FT", Text = "Full-time" },
new SelectItem { Value = "PT", Text = "Part-time" },
new SelectItem { Value = "ST", Text = "Student" },
new SelectItem { Value = "UN", Text = "Unemployed" }

};
}

}

Text must be a string but

Value can be any data

type. Set the Value to an

integer or enum to use the

selection factory to set

integer or enum properties.

[SelectOne(SelectionFactoryType = typeof(WorkStatusSelectionFactory))]
public virtual string WorkStatus { get; set; }

Use SelectOne for a dropdown list, use SelectMany for multiple checkboxes.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 239

using EPiServer.Shell.ObjectEditing;
using System.Collections.Generic;

namespace AlloyTraining.Business.SelectionFactories
{

public enum Continent
{

None, Africa, Asia, Europe, NorthAmerica, SouthAmerica, Antartica, Oceania
}

public class ContinentSelectionFactory : ISelectionFactory
{

public IEnumerable<ISelectItem> GetSelections(ExtendedMetadata metadata)
{

return new List<SelectItem>
{

new SelectItem { Value = Continent.None, Text = "None" },
new SelectItem { Value = Continent.Africa, Text = "Africa" },
new SelectItem { Value = Continent.Asia, Text = "Asia" },
new SelectItem { Value = Continent.Europe, Text = "Europe" },
new SelectItem { Value = Continent.NorthAmerica, Text = "North America" },
new SelectItem { Value = Continent.SouthAmerica, Text = "South America" },
new SelectItem { Value = Continent.Antartica, Text = "Antartica" },
new SelectItem { Value = Continent.Oceania, Text = "Oceania/Australia" }

};
}

}
}

[SelectOne(SelectionFactoryType = typeof(ContinentSelectionFactory))]
public virtual Continent Continent { get; set; }

// or enumerate the enum values but you lose formatted text
return Enum.GetValues(typeof(Continent)).Select(c => new SelectItem {

Value = c, Text = Enum.GetName(typeof(Continent), c) }).ToList();

Episerver

Implementing a property list with a simple type

241

On a content type, define a list of simple types,

for example, DateTime values:

To limit the number of items:

To validate individual items:

[ItemRange(1, 10)], [ItemStringLength(50)], [ItemRegularExpression(…)]

Module B – Defining Content Types – Advanced techniques – Implementing lists

http://world.episerver.com/blogs/bartosz-sekula/dates/2017/10/property-value-list/

[ListItems(5)]
public virtual IList<int> MaxFiveInts { get; set; }

public virtual IList<DateTime> ListOfDates { get; set; }

If you have defined an IList<T> property that you would like editors to be able to edit from on-page edit

view, then you must decorate with a UIHint to allow PropertyFor to render correctly:

Add a StringsList.cshtml file to ~/Views/Shared/DisplayTemplates folder:

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 241

[UIHint("StringsList")]
public virtual IList<string> Names { get; set; }

@model IEnumerable<string>
@if (Model != null && Model.Any())
{

@foreach (var stringValue in Model)
{

@stringValue
}

}

Episerver

Implementing a property list with a complex type

242

Module B – Defining Content Types – Advanced techniques – Implementing lists

public class Person
{

public string FirstName { get; set; }
public string LastName { get; set; }
public DateTime? BirthDate { get; set; }

}
[PropertyDefinitionTypePlugIn(

DisplayName = "List of people i.e. IList<Person>",
Description = "An editable list of Person instances.")]

public class PropertyPersonList : PropertyList<Person>
{
} [EditorDescriptor(EditorDescriptorType =

typeof(CollectionEditorDescriptor<Person>))]
public virtual IList<Person> People { get; set; }

CMS 11 IList<T> aka PropertyList only officially supports simple types like int and DateTime.

It can be used with complex types but this is not officially supported (yet).

http://world.episerver.com/documentation/Release-Notes/ReleaseNote/?releaseNoteId=CMS-7212

The dangers of using pre-release API’s

https://www.brianweet.com/2017/02/24/dangers-of-using-pre-release-apis.html

To serialize Episerver property types like Url

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 242

using EPiServer;
using EPiServer.Cms.Shell.Json.Internal; // no breaking changes guarantee
using Newtonsoft.Json;
using System;

public class Person
{

public string FirstName { get; set; }
public string LastName { get; set; }
public DateTime? BirthDate { get; set; }

[JsonProperty]
[JsonConverter(typeof(UrlConverter))]
public Url HomePage { get; set; }

}

EpiserverEpiserver

Exercise B4 – Creating page types with a
shared layout and navigation

Estimated time: 45 minutes

Prerequisites: Exercises B1 to B3.

In this exercise, you will:

• Create a page type named Standard that will

be used for generic pages in the site.

• Create a page type named Product that will be

used for product pages in the site.

• Add a menu to the site to navigate between

children of the Start page.

Module B – Defining Content Types

243

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 243

Episerver

Module C

Rendering Content
Templates

Episerver CMS – Development Fundamentals

In this module, you will learn about registering content templates,
using content areas, display channels, display options, and tags

for selecting between multiple templates for a content type.

244

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 244

Episerver

Module agenda

245

• Registering content templates

• Container and data pages

• Extension methods

• Routing

• Using simple addresses vs friendly URLs

• Content areas

• Partial content templates

• Exercise C1 – Rendering partial templates

• Multi-template content types

• Display channels, display options, and tags

• Exercises C2 to C5 – Handling multiple content templates

Module C – Rendering Content Templates

StandardPage

Templates for
Visitor requests…

…from desktop
browsers

…from mobile
devices

…in censorous
countries

Templates for
Editors to use in
a Content Area

Full width

2/3 width

1/3 width

Templates for
Developers to
use in views

All properties

Subset of
properties

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 245

The [TemplateDescriptor] attribute can be used on templates to add meta data to the template. The attribute

can also be used to set the template as the default template for the content data and whether page types that

inherit from the one this template supports should also inherit this template.

Behavior if TemplateDescriptor attribute is present but no parameters are specified:

• Default = false

• Inherited = false

• Path = null

• The path to the template to be rendered only needs to be set if folder structure does not follow

namespace structure. There is a namespace convention where the file will be searched for in the

path according to the namespace.

• Description = null

Important regarding inheritance of templates:

If the TemplateDescriptor attribute is not present at all, or present with inherited set to true, the template will

be available to render all page types that inherit from this one. This can be useful, for example, if you want to

have a fallback template for content types that do not have a specific template.

In the case you DON’T want this behaviour, you need to add the TemplateDescriptor attribute and mark it with

Inherited=false.

Episerver

Controlling template registration

247

When there are multiple possible page templates, you can explicitly set a default in code or Admin view

Module C – Rendering Content Templates – Registering content templates

public class NewsPageAlternativeController : PageController<NewsPage>

public class NewsPageController : PageController<NewsPage>

Default is false and Inherited is true if TemplateDescriptor is NOT

present. If it is present, and Inherited is not set, Inherited is false.

Admin view can override the default

template for a content type.

[TemplateDescriptor(Default = true, Inherited = true,
Name = "News Page (Normal)", // optional: uses class name if not set
ModelType = typeof(NewsPage), // optional: uses <T> if not set
Path = "~\Views\Normal.cshtml", // optional: uses ~\Views\{controller}\{action}
Description = "This is the default page template for a News page.")]

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 247

Key notes for container pages
• Page types without a public template are called “container pages”.

• Container pages have no preview and cannot be linked from other pages.

• Cannot be accessed by a URL (404).

• Examples of use:

• Often used to logically group pages in the content tree, for example days/months/years in a news

archive.

• Can be used as a settings container

• Data pages are content items that are never rendered stand-alone but where the content is

included in listings, landing pages etc. where they are rendered via another control and where the

editor should be able to work with the data.

More details on customizing the look and behavior in the UI for content types can be found in this blog written

by Linus Ekström: http://world.episerver.com/Blogs/Linus-Ekstrom/Dates/2013/12/Customizing-the-look-

and-behavior-in-the-UI-for-your-content-types/

Episerver

Understanding container and data pages

All pages can be a parent to other pages, so in that sense

all pages are “container pages”. When Episerver

developers talk about container pages, they mean a page

without a template that is designed to “contain” children,

but the page itself cannot be rendered to a visitor.

Examples in Alloy are the How to buy and Campaigns

pages, or the Contacts page underneath About us.

A similar concept are data pages (template-less leaf

pages). These store data that “belongs” to their parent

page but render only as part of the parent. They do not

render as full pages themselves. For example, FAQItems.

Module C – Rendering Content Templates – Container and data pages

249

Some developers have a strong opinion

that container pages are bad, because

the default URL behaviour would be to

show a 404 for the container page URL.
https://www.epinova.no/en/blog/container-

pages-and-why-you-shouldnt-use-them/404

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 249

Episerver

Implementing container and data pages

If you want to use container or data pages, simply create a page type without a page template.

For example, a class named ContainerPage that derives from PageData, with no

PageController<ContainerPage> and no view.

Optionally, create an UI descriptor to change the icon shown in the Navigation pane Pages tree:

[UIDescriptorRegistration]
public class ContainerPageUIDescriptor : UIDescriptor<ContainerPage>
{

public ContainerPageUIDescriptor()
: base(ContentTypeCssClassNames.Container)

{
DefaultView = CmsViewNames.AllPropertiesView;

}

Module C – Rendering Content Templates – Container and data pages

250

View the list of built-in icons at http://ux.episerver.com/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 250

Episerver

Translating text into different languages

252

Translate extension method is used to translate language-specific strings.

• Uses the LocalizationService behind the scenes.

• Supply a simplified XPath expression to indicate which string you want to retrieve:

Module C – Rendering Content Templates – Extension methods

@Html.Translate("/buttonCaption/previewPage")

<?xml version="1.0" encoding="utf-8" ?>
<languages>
<language name="English" id="en">

<buttonCaption>
<previewPage>Preview Page</previewPage>

<language name="Swedish" id="sv">
<buttonCaption>

<previewPage>Förhandsgranskningssida</previewPage>

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 252

Trigger full page refresh when changing the value of a property
Some properties can affect the rendering of several parts of the page. For instance, you may have a boolean

value on you page type that enables/disables several panels. To get a correct preview of such a property you

would need to do a full refresh of the page. The following is needed to achieve this:

1: The names of properties that trigger a full refresh is retrieved from and stored as a comma separated list in

PageBase.EditHints, so in order to register a property for full refresh preview you will need to add it to this list.

In any page that inherits from PageBase this is done by calling EditHints.AddFullRefreshFor(p =>

p.<yourproperty>).

2: You also have to make sure that the Html Helper Html.FullRefreshPropertiesMetaData() is used somewhere

in the markup if you have registered any properties for full refresh.

Example:

• In the View:

@Html.FullRefreshPropertiesMetaData()

@* Alternative to registering the AddFullRefreshFor in your Controller *@
@*Html.FullRefreshPropertiesMetaData(new []{”ShowBanner”}) *@

• In the Controller code:
EditHints.AddFullRefreshFor(p => p.ShowBanner);

• In the Model:
[ContentType]
public class MyPageType : PageData
{

public virtual string Heading { get; set; }
public virtual XhtmlString MainBody { get; set; }
public virtual bool ShowBanner { get; set; }

}

Episerver

Triggering a full-page refresh in Edit view when changing a property value

253

A property exists in the page type:

[ContentType]

public class NewsPage : PageData

{

public virtual bool ShowBanner { get; set; }

}

Register the property for a full page refresh in the view:

@Html.FullRefreshPropertiesMetaData(new[] { "ShowBanner" })

Module C – Rendering Content Templates – Extension methods

http://world.episerver.com/documentation/developer-guides/CMS/Content/Edit-hints-in-MVC/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 253

Episerver

Rendering hyperlinks and URLs for a content reference

254

To render a clickable hyperlink that uses the content’s name for the clicked text and the simplest URL

that will navigate to the content, then pass the content’s reference into the Html.ContentLink()

extension method:

To render just the URL, pass the content’s reference into the Url.ContentUrl() extension method:

Module C – Rendering Content Templates – Extension methods

ContentReference referenceToVideo = ...

@Html.ContentLink(referenceToVideo)

contentapprovals.mpeg

<video src="@Url.ContentUrl(referenceToVideo)" />

<video src="/siteassets/videos/contentapprovals.mpeg" />

ContentLink and ContentUrl extension methods only work on content that has URLs: pages and media.

To render blocks, write an extension method to fetch the block object using the content reference, then use

the RenderContentData extension method.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 254

Episerver

Rendering content with a partial template

255

To render the references to content items in a content area, call the Html.PropertyFor() extension

method on the content area property. This method will enumerate each content reference, load the

content item, and render it using its partial template (if it has one).

To render a content item using its partial template (if it has one), then pass the content into the

Html.RenderContentData() extension method:

…but if we have a content reference instead of the content item, we need a way to manually load the

content.

Module C – Rendering Content Templates – Extension methods

IContent someContent = ...

@Html.RenderContentData(someContent, isContentInContentArea: false)

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 255

Episerver

Defining your own extension methods for views

It is considered bad practice (and it’s messy) to write multiple statements of code in a view (.cshtml),

so simplify your view code by creating extension methods for common tasks.

For example, the following can be used to convert a ContentReference into its content:

Module C – Rendering Content Templates – Extension methods

256

namespace AlloyTraining.Business.ExtensionMethods
{

public static class ContentExtensions
{

public static TContent Get<TContent>(
this ContentReference contentLink) where TContent : IContent

{
var loader = ServiceLocator.Current.GetInstance<IContentLoader>();
return loader.Get<TContent>(contentLink);

}

@Model.CurrentPage.ParentLink
.Get<PageData>().Name

Another example extension method, that returns an absolute URL from a page reference, and you will use it in

an exercise in this module:

Copyright © Episerver AB. All rights reserved.

Page 256

Episerver CMS – Development Fundamentals

public static string ExternalURLFromReference(this PageReference p)
{

var loader = ServiceLocator.Current.GetInstance<IContentLoader>();

PageData page = loader.Get<PageData>(p);

UrlBuilder pageURLBuilder = new UrlBuilder(page.LinkURL);

Global.UrlRewriteProvider.ConvertToExternal(pageURLBuilder,
page.PageLink, UTF8Encoding.UTF8);

string pageURL = pageURLBuilder.ToString();

UriBuilder uriBuilder = new UriBuilder(EPiServer.Web.SiteDefinition.Current.SiteUrl);

uriBuilder.Path = pageURL;

return uriBuilder.Uri.AbsoluteUri;
}

Episerver

Understanding route segments

258

Module C – Rendering Content Templates – Routing

/en/about-us/news-events/press-releases/details

When the leaf content node has been found,

the content type’s template is determined.
Episerver CMS registers a few routes. The most important is:

/{language}/{page node(s)}/{action}

• {language} is optional, and must match a valid ISO culture code, e.g. en, en-us, fr, and so on.

• {page node(s)} is “greedy” so it will match as much of your page tree hierarchy as possible.

• {action} is optional, but if specified it corresponds to an action method name in the controller.

Optionally, you can register one or more partial routers, at any depth within the page tree hierarchy:

/{language}/{partial router node(s)} e.g. /en/fashion/clothes/mens/shirts

• {partial router node(s)} is “greedy” and will process as many segments as your class that

implements EPiServer.Web.IPartialRouter wants to. When you install Episerver Commerce it

registers a partial router for its product catalogs.

Routing

By default, the routing system in Episerver uses System.Web.Routing, with specific segments added for

language, node, and a partial route. Routing is automatically handled based on content type.

There are several routes registered by default:

• Shell modules have routes registered to support routing to gadgets.

• CMS registers a number of routes by default:
• routing a simple address.

• routing for sites (can be several sites in a multi-site environment).

• routing pages/content from the root (that is, pages/content not under any start page).

• The “ordinary” MVC route “{controller}/{action}” also is registered to support partial requests through

Html.RenderAction. However, direct browsing to those routes are prevented.

Events

The EPiServer.Web.Routing.IContentRouteEvents interface exposes the events RoutingContent
and RoutedContent, which are raised during incoming routing. RoutingContent events are raised before

executing the default routing implementation, and the content that matches the request is set in an event

handler. RoutedContent events are raised after executing the default routing, and the routed content is

replaced in an event handler.

https://world.episerver.com/documentation/developer-guides/CMS/routing/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 258

Episerver

Understanding friendly URLs and simple addresses

259

Pages and media have a content GUID-based link URL:

…and a multi-segment SEO-friendly URL, based on its hierarchy within the content tree:

Pages can have a simple address:

• Simple address is culture specific, e.g. bears in

English, björnar in Swedish.

• Simple address stays constant if the page is moved

within the tree. Friendly URL changes if the page is

moved within the tree.

Module C – Rendering Content Templates – Routing

/link/426cf12f1f014ea0922f0778314ddaf0.aspx

An error is shown if you use a simple address that conflicts with an existing page:

An error is shown if you use a segment name that conflicts with a simple address of an existing page:

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 259

Episerver

Understanding links and URLs

What is the difference between the following properties of PageData?

Note that some use Link as a suffix and some use the acronym URL in their names:

• ArchiveLink, PageLink, ContentLink, ParentLink

• ExternalURL, LinkURL, StaticLinkURL, URLSegment

Module C – Rendering Content Templates – Routing

260
ExternalURL is the optional simple address; URLSegment is one part of the friendly URL.

Copyright © Episerver AB. All rights reserved.

Page 260

Episerver CMS – Development Fundamentals

Episerver

Converting between links and URLs

Get a URL resolver using one of the DI techniques:

How to convert a ContentReference or IContent instance into a friendly URL string:

How to convert a link URL string to a friendly URL string suitable for good SEO:

Html.ContentLink() and Url.ContentUrl() use UrlResolver internally.

Module C – Rendering Content Templates – Routing

261

UrlResolver resolver;

string url = resolver.GetUrl(ContentReference.StartPage);
string url = resolver.GetUrl(currentPage);

string url = resolver.GetUrl("/link/1aefd93a056249ebb9b0ac3656e993c8.aspx");

Copyright © Episerver AB. All rights reserved.

Page 261

Episerver CMS – Development Fundamentals

Episerver

Using content areas

263

Content areas are parts of a content type where CMS Editors can add references to any content,

including pages, blocks, folders, forms, and media assets.

• Define a ContentArea property in the content type:

• Render in the template view using Html.PropertyFor()

• You can add the CSS class attribute to each rendered item with an anonymous object, and pass

custom additional view data that is then usable inside the partial template for each content item:

Module C – Rendering Content Templates – Content areas

public virtual ContentArea MainContentArea { get; set; }

@Html.PropertyFor(model => model.CurrentPage.MainContentArea)

@Html.PropertyFor(x => x.CurrentPage.MainContentArea,
additionalViewData: new { CssClass = "row highlight" })

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 263

Episerver

Allowing and restricting content types in content areas

264

Developers can allow or restrict content types in a content area with [AllowedTypes] attribute.

• Allowed types (either pass types as params or an array of types):

[AllowedTypes(typeof(NewsPage), typeof(ArticlePage), typeof(BlogPage))]
public virtual ContentArea NewsPages { get; set; }

[AllowedTypes(new[] { typeof(ImageData), typeof(VideoData) })]
public virtual ContentArea Gallery { get; set; }

• Restricted types are passed through as a second array of types:

[AllowedTypes(new[] { typeof(BlockData) }, new[] { typeof(JumbotronBlock) })]
public virtual ContentArea RelatedContentArea { get; set; }

• Good practice is to name parameters for clarity:

Module C – Rendering Content Templates – Content areas

AllowedTypes implicitly

restricts every other type.

[AllowedTypes(AllowedTypes = new[] { typeof(PageData) },
RestrictedTypes = new[] { typeof(NewsPage), typeof(ICommentable) })]

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 264

Episerver

Rendering content references in content areas

266

Blocks have automatic support for rendering in a content area.

Pages and media do not have automatic support for rendering in a content area.

To enable rendering:

• Pages: create a partial content controller for the page type:

• Media: create a partial content controller for the media type:

• If the template should be controller-less, create a view in Shared and name it after the media type:

Module C – Rendering Content Templates – Partial content templates

PartialContentController<StandardPage>

PartialContentController<ImageFile>

~\Views\Shared\ImageFile.cshtml

public class ImageFile : ImageData

public class StandardPage : SitePageData

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 266

Episerver

Full and partial page templates

If you have a page type named EmployeePage with properties for:

• EmployeeCode, FirstName, LastName, Department, BirthDate, HireDate, FireDate.

You could have at least two page templates for it:

• EmployeePageController : PageController<EmployeePage>

when a normal, full-page request is made for the page.

• ~/Views/EmployeePage/Index.cshtml:

the view would typically output ALL the page’s properties and have a layout.

• EmployeePartialPageController : PartialContentController<EmployeePage>

when the page is dropped into a ContentArea.

• ~/Views/EmployeePartialPage/Index.cshtml:

this view would typically output a subset of the page’s properties without a layout.

Module C – Rendering Content Templates – Partial content templates

267

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 267

Using ILSpy to reveal how the HasTemplate() extension method for PageData works:

Using ILSpy to reveal how the IsVisibleOnSite() extension method for PageData works:

Episerver

Checking if a page has a full page template

268

Used to check if a page has a full page template. For example, before rendering a hyperlink to that

page. You must import EPiServer.Core to add the extension method to an instance of PageData.

Module C – Rendering Content Templates – Partial content templates

@if (Model.CurrentPage.HasTemplate())
{

Click to go to full page.

}

@using EPiServer.Core

A more accurate name for the method

would be HasFullPageTemplate()

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 268

Episerver

Partial templates for media in content areas

269

Create a partial template for a media type by either:

• Following the naming convention for a partial view: ~\Views\Shared\ImageFile.cshtml

• Or by defining a partial content controller with a view:

Module C – Rendering Content Templates – Partial content templates

@model ImageFile
<img src="@Url.ContentUrl(Model.ContentLink)"

alt="@Model.Name" title="@Model.Copyright" class="image-file" />

public class ImageFile : ImageData

public class ImageFileController : PartialContentController<ImageFile>
{

public override ActionResult Index(ImageFile currentContent)
{

return PartialView(currentContent);
}

}

~\Views\ImageFile\Index.cshtml

Example media asset controller with a view model

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 269

using System.Web.Mvc;
using AlloyDemo.Models.Media;
using AlloyDemo.Models.ViewModels;
using EPiServer.Web.Mvc;
using EPiServer.Web.Routing;

namespace AlloyDemo.Controllers
{

public class ImageFileController : PartialContentController<ImageFile>
{

private readonly UrlResolver urlResolver;

public ImageFileController(UrlResolver urlResolver)
{

this.urlResolver = urlResolver;
}

public override ActionResult Index(ImageFile currentContent)
{

var model = new ImageViewModel
{

Url = urlResolver.GetUrl(currentContent.ContentLink),
Name = currentContent.Name,
Copyright = currentContent.Copyright

};

return PartialView(model);
}

}
}

Episerver

Rendering templates

Episerver CMS’s template resolver

looks for any class that

implements IRenderTemplate<T>

where T is a content type.

In practice, you will usually create

a class that derives from

PageController<T> ,

PartialContentController<T>, or

BlockController<T> as in this

example hierarchy in Alloy.

Module C – Rendering Content Templates – Partial content templates

Episerver

Alloy

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 270

EpiserverEpiserver

Exercise C1 – Creating partial templates
for product pages and image files for use
in content areas

Estimated time: 30 minutes

Prerequisites: Exercises B1 – B4

In this exercise, you will:

• Add a content area to the Start page.

• Create a partial template for product pages.

• Create a partial template for images.

Module C – Rendering Content Templates

271

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 271

Episerver

Multiple templates for a single content type

273

A content type can have multiple templates.

For example:

• A template for desktop browsers, and another for

mobile browsers.

• A template for countries with high bandwidth,

and another for countries with low bandwidth.

• Templates for different column widths in a layout:

Full, Wide (2/3 width), and Narrow (1/3 width).

• A template the returns HTML, and templates that

return PDF, Excel, and Word formats.

• Templates that return data formats like JSON

and XML and RSS feed formats.

Module C – Rendering Content Templates – Multi-template content types

Several templates (implemented in either ASP.NET Web Forms or ASP.NET MVC) can be registered for any

content type (typically pages or blocks even if the underlying templating system supports any .NET type).

By default, there are no channels in an installation and you need to add the channels you desire in your

templates. If no matching channel is found no tag will be added when trying to find templates.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 273

By default when a template renderer is associated with a Tag then that renderer will only be available when

the calling context (given by for example Property, ContentControl, PropertyFor) has a matching tag. By setting

the attribute AvailableWithoutTag to true on your template the template will be available also when calling

context has no tag specified.

Episerver

Selecting a template based on tag

274

• Apply tags to the templates.

• Tags are checked during template selection.

• Episerver has a class with common tags, e.g.

Mobile and Preview.

• Create your own tags with templates for your own

custom scenarios.

Both of these templates can render a NewsPage:

Module C – Rendering Content Templates – Multi-template content types

namespace EPiServer.Framework.Web
{

public static class RenderingTags
{

public const string Preview = "Preview";
public const string Edit = "Edit";
public const string Header = "Header";
public const string Footer = "Footer";
public const string Article = "Article";
public const string Sidebar = "Sidebar";
public const string Mobile = "Mobile";
public const string Empty = "Empty";

}
}

public partial class NewsPageController : PageController<NewsPage>

[TemplateDescriptor(Tags = new[] { RenderingTags.Mobile }, AvailableWithoutTag = false)]
public partial class NewsPageMobileController : PageController<NewsPage>

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 274

Episerver

Applying tags

275

Tags can be applied in three ways:

• Display channel: applies a tag automatically at runtime based on information in the incoming HTTP

request, e.g. user agent, cookie, geolocation.

• Display option: an editor can choose from a menu of tags and apply one manually to an individual

content reference in a content area.

• Code in a view: a developer can apply tags to all content items in a content area:

Module C – Rendering Content Templates – Multi-template content types

@Html.PropertyFor(x => x.CurrentPage.MainContentArea,
additionalViewData: new { Tags = "narrow" })

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 275

Episerver

Understanding responsive vs. adaptive design

Responsive design

• Happens on the client-side using HTML5, CSS3, and JavaScript

• Same response for all requests

Adaptive design

• Happens on the server-side using display channels

• Customize response for each request…

• …and therefore can minimizes size of response so better for low bandwidth customers.

Many sites use both.

Module C – Rendering Content Templates – Multi-template content types – Display channels

277

Display channels is a way to control the rendering of content depending on the request:

• Several templates, control which template to use

• Single template, control output depending on channel

Editors can preview display channels when editing content.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 277

To create a Display Channel, create a class that inherits from EPiServer.Web.DisplayChannel.

The system will scan and register all found channel instances during initialization. There is no need to

explicitly register the channel.

Both of the below templates will be registered as templates for a page type called NewsPage.

If the Mobile channel (above example) is active, templates with tag “Mobile” will be preferred.

public class NewsPageController : PageController<NewsPage> {}

[TemplateDescriptor(Tags = new[] { “Mobile” })]
public class NewsMobileController : PageController<NewsPage> {}

Episerver

Implementing a display channel

278

To implement a display channel, inherit from DisplayChannel and override two members:

• ChannelName must return a string value that will be the tag that is used for template selection.

• IsActive must return true or false, based on the information available in the HTTP context:

Module C – Rendering Content Templates – Multi-template content types – Display channels

public class MobileChannel : DisplayChannel
{

public override string ChannelName { get { return "mobile"; } }
public override bool IsActive(HttpContextBase context)
{

return context.Request.Browser.IsMobileDevice;
}

} Good Practice

IsActive implementation must be as fast as possible.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 278

Episerver

Implementing a display resolution

279

They only change the size of the simulated viewport. They have no affect at runtime for visitors!

Implement the IDisplayResolution interface and override the ResolutionId property in the channel.

• Each display channel can have a default display resolution. An editor can mix and match display

channels and display resolutions.

Module C – Rendering Content Templates
– Multi-template content types – Display channels

public interface IDisplayResolution
{

string Id { get; }
string Name { get; }
int Height { get; }
int Width { get; }

}

public class MobileChannel : DisplayChannel
{

...
public override string ResolutionId { get {

return typeof(IPhone7PlusResolution).FullName; } }
}

public class IPhone7PlusResolution : IDisplayResolution

http://www.quirksmode.org/m/tests/widthtest_vpdevice.html

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 279

Episerver

Programmatically detecting active display channels

Instead of having multiple templates, it might be cleaner to have fewer templates, and set a CSS class

or other settings, to be read to modify the view’s output programmatically.

The following example shows how to set CSS class depending on the active display channel:

bool mobileDisplayChannelActive = service.GetActiveChannels(HttpContext)
.Any(c => string.Equals(c.ChannelName, "mobile", StringComparison.OrdinalIgnoreCase));

if (mobileDisplayChannelActive)
{

ViewBag.CssClass = "mobile";
}

Module C – Rendering Content Templates – Multi-template content types – Display channels

280

private readonly DisplayChannelService service;

<div class="@ViewBag.CssClass">

@if (ViewBag.CssClass == "mobile")

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 280

See the EPiServer.Web.DisplayOptions class for more information and method overloads.

Note: An implementation example is available in the Alloy Sample site.

Episerver

Applying tags to content areas using display options

282

Module C – Rendering Content Templates – Multi-template content types – Display options and tags

In an initialization module, get the DisplayOptions

service using a DI technique, and then call Add

for each Display as: menu option:

displayOptions.Add(
id: "promo",
tag: "promo",
// The name and description properties can also be reference keys to
// a language resource to allow localization.
name: "Promotion",
description: "Promotional content is displayed full width and highlighted.",
iconClass: "icon-promo");

DisplayOptions displayOptions;

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 282

To see this in action: Look in Alloy templates and add the same block to some different content areas.

You can access the content in a content area from code:

foreach (IContent c in myPage.MyContentArea.Contents)
{

Response.Write("Hello " + c.Name);
}

Episerver

Applying tags to content areas using code in a view

283

With the use of Tags, different ContentAreas can render the same content in different ways.

• Add new { Tag = “TagName” } as a second parameter to PropertyFor:

@Html.PropertyFor(x => x.RelatedContentArea, new { Tag = "sidebar" })

• …and ensure that a partial content template can only be used if the tag is present:

[TemplateDescriptor(Tags = new[] { "sidebar" }, AvailableWithoutTag = false)]

public class EventPageInSidebarController : PartialContentController<EventPage>{}

Module C – Rendering Content Templates – Multi-template content types – Display options and tags

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 283

Why would you want to override the template resolver either before or after it has been actioned?

In an Enterprise site, where you can have multiple start pages, same codebase, same page types, but want to

have different rendering for _some_ of the page types.

Example: The Start page template is used for 3 of 4 sites, but for one site you need a completely different

rendering. It is the same page type though. You can tailor the selector to do this with some custom code,

listening to the TemplateResolver event(s).

Sample code: A code example that demonstrates how to exchange the template for mobile requests is

available on the TemplateResolver class in the Episerver CMS SDK (look at EPiServer.Web.TemplateResolver).

Episerver

Understanding the TemplateResolver algorithm

TemplateResolver automatically selects which template to use depending on current context:

1. Rendering mode – page or partial rendering?

2. Tags – set by a developer, or an editor using display options, or by an active display channel?

3. Closest, either default or first. With “closest” above means the template model with shortest

“inheritance chain”. That means that a template that is registered direct for the model will be

preferred before a template registered for a base class. It is possible to register templates for

interfaces as well.

It is possible to listen to raised events to control or override which template to use:

• TemplateResolver.TemplateResolving is raised before the selection chain is started.

• TemplateResolver.TemplateResolved is raised after the selection chain is completed.

Module C – Rendering Content Templates – Multi-template content types – Resolving templates

285

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 285

WITHOUT [TemplateDescriptor], Inherited = true, so AlphaController can be used for NewsPages.

WITH [TemplateDescriptor], Inherited = false, so BetaController cannot be used for NewsPages, even if NewsPage inherits

from StandardPage.

GammaController can only be used when mobile tag is applied, for example, when mobile display channel is active, or when

mobile display option is applied by editor, or when developer sets tag in view.

Episerver

TemplateResolver quiz

286

Which of the following controllers will be used?

1. HTTP request for About Us?

2. HTTP request for News & Events?

3. Same as 2. but with TemplateDescriptor?

Module C – Rendering Content Templates – Multi-template content types – Resolving templates

public class AlphaController : PageController<PageData>

[TemplateDescriptor]
public class BetaController : PageController<StandardPage>

[TemplateDescriptor(Tags = new[] { "mobile" }, AvailableWithoutTag = false)]
public class GammaController : PartialContentController<StandardPage>

public class DeltaController : PartialContentController<PageData>

4. About Us in a content area with mobile

display channel active?

5. About Us in a content area?

6. News & Events in a content area?

7. Same as 5. but with true?

2

1

5

4

6

public class NewsPage : StandardPagepublic class StandardPage : PageData

About Us is a StandardPage News & Events is a NewsPage

[TemplateDescriptor] // only applied in scenario 3.
3 404

7

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 286

EpiserverEpiserver

Exercises C2 to C5 – Handling multiple
content templates

Estimated time: 60 minutes

Prerequisites: Exercises B1 – B4, C1

2. Creating a partial template for all pages

3. Adding display options for content editors

4. Adding tags to content areas

programmatically

5. Setting tags using a display channel

Module C – Rendering Content Templates

287

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 287

Episerver

Further study

292

The following are recommendations of what to self-study after completing Modules B and C.

• Review the Notes sections underneath all the slides in Module B and C.

• Review the Content topic in the CMS Developer Guide:
https://world.episerver.com/documentation/developer-guides/CMS/Content/

• Review the Content Synchronization topic in the CMS Developer Guide:
https://world.episerver.com/documentation/developer-guides/CMS/Content/Synchronization/

• Review the Built-In Property Types topic in the CMS Developer Guide:
https://world.episerver.com/documentation/developer-guides/CMS/Content/Properties/built-in-property-types/

• Review the Media Types and Templates topic in the CMS Developer Guide:
https://world.episerver.com/documentation/developer-guides/CMS/Content/assets-and-media/Media-types-and-templates/

• Review the Rendering topic in the CMS Developer Guide:
https://world.episerver.com/documentation/developer-guides/CMS/rendering/

Module B – Defining Content Types
Module C – Rendering Content Templates

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 292

Episerver

Module D

Working with Blocks
In this module, you will learn about the two uses of blocks: as an

item of shared content and as a property type.

Episerver CMS – Development Fundamentals

293

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 293

Episerver

Module agenda

294

• Overview

• Content in Episerver: Blocks

• When to use a partial page or a block

• Understanding Episerver’s content model

• Block types and templates

• Creating a block type and block template

• Improving performance with controller-less blocks

Module D – Working with Blocks

• Shared and property blocks

• Using a block as a shared asset

• Using a block as a property type

• Rendering a ContentReference

• Previewing blocks

• Defining a preview content template

• Exercises D1 to D5 – Working with blocks

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 294

Episerver

Content in Episerver: Blocks

296

Content

CMS

Pages

StartPage

SearchPage

…and more

Blocks

TeaserBlock

LogoBlock

…and more

Folders Media

Commerce

Structure
Items

Catalogues

Categories

Leaf Items

Products

Shirt

...and more

Variants Bundles Packages

Module D – Working with Blocks – Overview

The structure of the website is made up of pages, where the names of the pages automatically form

structures and menus. You can create reusable smaller content parts for editing on the pages across your

website, called blocks.

Blocks are a group of properties. For example, a form block with heading, main body and a XForm, or an

image URL and an image description. With blocks you can add an image URL property and an image

description property to a new block type and call it “image”.

When creating and editing blocks you will get a similar experience as when working with pages. You can

rearrange the blocks on a page using drag and drop, and remove them. You can also see on which pages each

block is used, for example, if you are deleting a block you will be prompted to a dialog that shows you which

pages are affected.

A block can be either shared or used as a property. The blocks you can rearrange on a page are “shared”.

When using the block as a property on a particular page type, the values are set in the page by the editor just

as for other properties, and it can not be dragged and dropped.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 296

Episerver

When to use a partial page or a block

• Does the content need a public reference? Might a visitor want to bookmark the content?

Pages and media have URLs for public references; blocks do not.

• Is the content website functionality? For example: Share this on Facebook, LinkedIn, Twitter, and so

on, a dynamically-generated list of content, or a quiz component?

Website functionality should be implemented as blocks.

• Do you want optimal performance?

Blocks can be controller-less and that will give about a 10% performance improvement.

• Do you want to tease page content to draw a visitor deeper into your website?

All page types that you want to be able to promote by adding them to a content area should have a

partial template. If a page is promoted by using a block, this will create an overhead for the editor

since they need to manage the block as a separate item in parallel with the page. One of the points

of a CMS is to be able to create an item of content once, and renderer it in different scenarios. ☺

Module D – Working with Blocks – Overview

297

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 297

Episerver

Understanding Episerver’s content model

Module D – Working with Blocks – Overview

In older versions of Episerver CMS, all content items

were pages. Since CMS 7 in 2012, the content model

is more flexible.

• IContentData: dictionary of properties in the CMS.

• IContent: identifiable content in the CMS.

• ContentData: implements IContentData, can track

changes to its properties, and set default values.

• PageData: represents a page.

• MediaData: represents a media asset.

• BlockData: represents shared block content

(implements IContent at runtime using mixins) or

a property type (does not implement IContent).
298

PageData and MediaData implement IContent.

ContentData and BlockData do NOT.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 298

Partials

Page

Template

Page Type

.cshtml

Layout

.cshtml

View

.cs

Controlle

r

.cs

Model

Propert

y

Page

Website visitor

(+ Episerver Edit)

Page
Page

Visual Studio (+ Episerver Admin UI)

.cshtml

Partial

View

.cs

Partial

Controlle

r

(optional

)

Block Type

.cs

Model

Page
Page

Block

SQL

db

Block

Template

.cshtml

View
.cs

Controlle

r

(optional

)

Block

currentBlock is the instance of your block type and contains the properties defined in it, regardless if the block

is shared or used as a property.

Episerver

Creating a block type and block template

300

Module D – Working with Blocks – Block types and templates

[ContentType(DisplayName = "Contact", Description = "A customer contact in the CRM.",
GroupName = SiteGroupNames.Customers, Order = 200, GUID = "...")]

public class ContactBlock : BlockData
{

public virtual string FirstName { get; set; }

public class ContactBlockController : BlockController<ContactBlock>
{

public override ActionResult Index(ContactBlock currentBlock)
{

var viewmodel = ...
return PartialView(viewmodel);

}
}

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 300

The reason that you may choose to register a content template using the IViewTemplateModelRegistrator is

that for templates with no controller, the developer cannot decorate with [TemplateDescriptor] attribute.

Episerver

Improving performance with controller-less blocks

301

Module D – Working with Blocks – Block types and templates

PageController
<StartPage>

~/Views/StartPage
/Index.cshtml

Rendering other
properies

Rendering the
content area

BlockController
<TeaserBlock>

~/Views/TeaserBlo
ck/Index.cshtml

BlockController
<TeaserBlock>

~/Views/TeaserBlo
ck/Index.cshtml

BlockController
<TeaserBlock>

~/Views/TeaserBlo
ck/Index.cshtml

BlockController
<TeaserBlock>

~/Views/TeaserBlo
ck/Index.cshtml

Remove (or don’t create!) the block

controllers to improve performance.

Change the paths for the block views to

~/Views/Shared/TeaserBlock.cshtml

To control registration process, create a class that implements

IViewTemplateModelRegistrator.

~10% performance improvement
https://hacksbyme.net/2017/09/26/performance-when-using-controllers-for-blocks/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 301

public class TemplateRegistrator : IViewTemplateModelRegistrator
{

public void Register(TemplateModelCollection viewTemplateModelRegistrator)
{

// register two templates for StartPage

var defaultTemplate = new TemplateModel
{

TemplateType = typeof(MuppetController),
ModelType = typeof(StartPage),
Default = true,
DisplayName = "Start Page Template (Default)",
Description = "Default template for StartPage",

};

var alternativeTemplate = new TemplateModel
{

TemplateType = typeof(StartPageController),
ModelType = typeof(StartPage),
DisplayName = "Start Page Template (Alternative)",
Description = "Alternative template for StartPage",

};

viewTemplateModelRegistrator.Add(typeof(StartPage),
defaultTemplate, alternativeTemplate);

}
}

Episerver

Using a block as a shared asset

Shared blocks aka global blocks are stored in folders in the Assets

pane Blocks tab.

They can be added to a ContentArea property:

// can have references to any content with a partial template
public virtual ContentArea PagesBlocksAndMedia { get; set; }

…or used to set a ContentReference property:

// can have a reference to one shared block
[AllowedTypes(typeof(EmployeeBlock))]
public virtual ContentReference

ProductOwnerShared { get; set; }

Module D – Working with Blocks – Shared and property blocks

303

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 303

Episerver

Using a block as a property type

Blocks used as a property type are stored, versioned and loaded with the content that has a property

of that block type, and cannot be referenced on their own, unlike a shared block.

// cannot reference a shared block
public virtual EmployeeBlock ProductOwner { get; set; }

If you have a block used as a property type, you can render it in a view using PropertyFor:

@Html.PropertyFor(m => m.ProductOwner)

Module D – Working with Blocks – Shared and property blocks

304

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 304

To prevent a block type from being used as a shared block, but still allow it to be a property type, use the

AvailableContentTypes attribute to prevent it being created inside a folder:

[ContentType(DisplayName = "Person")]
[AvailableContentTypes(Availability = Availability.Specific,

ExcludeOn = new[] { typeof(ContentFolder) })]
public class PersonBlock : BlockData

Episerver

Rendering a ContentReference

To render a ContentReference property in a view, you must consider what type of content it is.

If it points to a page or a media asset, and you want to render as a clickable hyperlink:

If it points to a page or a media asset or a block, and you want to render it using a partial template:

Module D – Working with Blocks – Shared and property blocks

@using AlloyTraining.Business.ExtensionMethods

305

@{
Html.RenderContentData(Model.MyContentReference.Get(),

isContentInContentArea: false);
}

@Html.ContentLink(Model.MyContentReference, routeValues: null,
htmlAttributes: new { @class = RenderingTags.Mobile })

An extension method that

you have written that uses

IContentLoader to load

content from a content

reference.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 305

Preview rendering for blocks

A preview adds on-page editing functionality, and a realistic view of what the block will look like when added

to content areas with different widths.

The basic idea is that when editing shared blocks you should have a page template registered as

IRenderTemplate<BlockData> with a TemplateDescriptor that has Tag = "Preview". That template will then be

used when editing the block in on-page Edit view.

https://world.episerver.com/documentation/developer-guides/CMS/rendering/preview-rendering-for-blocks/

More information about preview of blocks during on-page edit is available on Episerver World, for example in

this blog article by Johan Björnfot:

http://world.episerver.com/Blogs/Johan-Bjornfot/Dates1/2012/9/Episerver-7--Rendering-of-content/

Episerver

Defining a preview content template

307

[TemplateDescriptor(Inherited = true, Tags = new[] { RenderingTags.Preview })]

public class PreviewController : ActionControllerBase, IRenderTemplate<BlockData>

Module D – Working with Blocks – Previewing shared blocks

<div class="row">
<div class="span12">
@Html.PropertyFor(x => x.ContentArea,

new { Tags = new[] { "full" })
</div>

</div>

<div class="row">
<div class="span8">
@Html.PropertyFor(x => x.ContentArea,

new { Tags = new[] { "wide" })
</div>

</div>

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 307

EpiserverEpiserver

Exercises D1 to D5 – Working with blocks

Estimated time: 60 minutes

Prerequisites: Exercises B1 – B4, C1 – C4

1. Creating a controller-less block

2. Creating a block with a controller

3. Creating a preview renderer for partial pages

and shared blocks

4. Moving properties to the basic info area

Prerequisites: Exercises B1 – B4.

5. Using a block as a content property type

Module D – Working with Blocks

308

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 308

Episerver

Module E

Navigating Content

Episerver CMS – Development Fundamentals

In this module, you will learn how to create content listings and
menus using IContentLoader, how to apply common filters, how to

find pages, and how to search for content.

314

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 314

Episerver

Module agenda

315

• Overview

• Types for getting, finding, and searching content

• Getting content listings

• Menus and content listings

• Getting content

• Filtering content listings

• Common filters

• Finding pages

• Property names when finding

Module E – Navigating Content

• Searching indexed content with Episerver

Search

• About Episerver Search

• Searching indexed content with Episerver Search

• Good practice for search queries

• Searching indexed content with Episerver Find

• About Episerver Find

• Searching indexed content with Episerver Find

• Good practice for find queries

• Exercises E1 and E5 – Navigating content

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 315

Episerver

Ways to navigate

317

Visitors navigate around the content

in your website in two ways:

1. Using the menus, trees, breadcrumbs, and other visual navigation components that you provide.

2. Searching by words and phrases and picking from search results.

In this module, you will learn how to:

• Generate lists of pages that can be passed to views and turned into navigation menus by using the

structure of the pages.

• Filter lists of content to ensure only content that the current visitor should be able to navigate to are

presented to them.

• Provide custom indexed search capabilities.

Module E – Navigating Content – Overview

Menus and content listings are collections of pages that are rendered in a particular way, e.g.

• Top-level menu: children of the Start page with icons

• Submenu: children of the default menu item

• Dropdown menu: children of each of the submenu items

Simply output URLs, name or title, publish dates, and so on, that you want to show to visitors.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 317

Episerver

Types for getting, finding, and searching content

Module E – Navigating Content – Overview

Type Looks in Notes

IContentLoader Object cache, then

database if necessary.

Use to programmatically generate listings and menus for

navigation. Always use in combination with FilterForVisitor
or FilterContentForVisitor to remove unpublished,

template-less, non-permissioned content.

IPageCriteria
QueryService

Database It has its place, but try to avoid, because: (1) it only finds pages,

(2) it always hits the database, (3) the properties are not

indexed.

SearchHandler Episerver Search Index Search results include content reference if you need to get the

full content data. Not supported by DXC Service.

SearchClient Episerver Find Index An extension method can be used to fetch the full content data.

Included with all DXC Service packages.

318

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 318

Episerver

Getting content

Module E – Navigating Content – Getting content listings

Method Parameter(s) Return Type Cached?

Get<T> * ContentReference T ✓

TryGet<T> * ContentReference, out T bool ✓

GetBySegment ContentReference, string, CultureInfo IContent ✓

GetChildren<T> ContentReference IEnumerable<T> ✓

GetAncestors ContentReference IEnumerable<IContent> 

GetDescendents ContentReference IEnumerable
<ContentReference>



GetItems<T> IEnumerable<ContentReference> IEnumerable<T> 

320

var startPage = loader.Get<StartPage>(ContentReference.StartPage);
var childrenOfStartPage = loader.GetChildren<PageData>(ContentReference.StartPage);

private readonly IContentLoader loader;

* Get and TryGet have overloads for language branches

and to use a content GUID instead of a content reference.

Getting a single content item

Code defensively when getting content, for example:

Getting ancestors
Although GetAncestors() hits the database, it only needs to return a single row to return the IDs of its

ancestors, for example, pkID 13 is Reporting Made Simple, whose parent is Events, whose parent is News &

Events, whose parent is About us, whose parent is Start, whose parent is Root:

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 320

// throws exception if it is NOT a NewsPage
var newsPage = loader.Get<NewsPage>(contentReference);

// returns null if it is NOT a NewsPage
var newsPage = loader.Get<IContent>(contentReference) as NewsPage;

Episerver

Creating a page listing example

321

Module E – Navigating Content – Getting content listings

@foreach (PageData page in Model.ListOfPages)
{

if (page.ContentLink.CompareToIgnoreWorkID(Model.CurrentPage.ContentLink)
{

@page.Name <small>@page.StartPublish</small>

ViewModel public IEnumerable<PageData> ListOfPages { get; set; }

Controller

View

model.ListOfPages = loader
.GetChildren<PageData>(ContentReference.StartPage);

private readonly IContentLoader loader;

Getting descendants and then getting items

Get an instance of an IContentLoader and get the descendants of the Start page. This would be ALL children, grand-

children, great-grand-children, and so on, so the method doesn’t return the PageData instances, instead it returns

ContentReference instances.

To fetch the actual PageData instances, IContentLoader has a GetItems method. You must pass an instance of

LoaderOptions as the second parameter even if you don’t need to set options like language branches.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 321

var loader1 = ServiceLocator.Current.GetInstance<IContentLoader>();
IEnumerable<ContentReference> descOfStartAsRefs =

loader1.GetDescendents(ContentReference.StartPage);
IEnumerable<IContent> descOfStartAsContent =

loader1.GetItems(descOfStartAsRefs, new LoaderOptions());

Episerver

Understanding common content filters

Module E – Navigating Content – Filtering content listings

Type Parameter(s) Description

FilterPublished PagePublishedStatus Removes unpublished content.

FilterTemplate TemplateTypeCategories Removes content that does not have the chosen

template type(s), e.g. partial.

FilterAccess AccessLevel Removes content if the current user does not

have the specified access right.

FilterForVisitor IEnumerable<IContent>
or PageDataCollection

A predefined filter that includes the above

three common filters. Returns a new collection of

content items; the passed collection is unaffected.

FilterContentForVisitor IList<IContent> A predefined filter that includes the above three

common filters. The list passed will have items

removed.

323

using EPiServer.Filters;

Filtering for access rights

The pages retrieved using calls to, for example, GetChildren will not automatically be filtered based on the site

visitor’s read access, published status, or template availability.

To achieve this, you can use EPiServer.Filters class FilterForVisitor, which calls:

• FilterPublished

• FilterAccess

• FilterTemplate

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 323

Episerver

Filtering pages example

1. Get an instance of an IContentLoader and get the

children of the Start page.

2. Apply a filter to remove (a) unpublished content, (b) content the current user shouldn’t see,

and (c) content without a render template, and

3. Use LINQ to remove children that have their Display in navigation check box cleared.

IContent does not have the VisibleInMenu property so we must explicitly cast back into PageData.

Module E – Navigating Content – Filtering content listings

IEnumerable<PageData> childrenOfStart =
loader.GetChildren<PageData>(ContentReference.StartPage);

IEnumerable<IContent> filteredChildren = FilterForVisitor.Filter(childrenOfStart);
IEnumerable<PageData> displayInNavigationChilden = filteredChildren

.Cast<PageData>().Where(p => p.VisibleInMenu);

324

private readonly IContentLoader loader;

1
2

3

3

Using lambda expressions in LINQ

In most cases, avoid Episerver filters for sorting and filtering, and use LINQ instead:

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 324

IContentRepository contentRepository =
ServiceLocator.Current.GetInstance<IContentRepository>();

IEnumerable<ProductPage> pages =
contentRepository.GetChildren<ProductPage>(ContentReference.StartPage);

IEnumerable<IContent> filteredContent = FilterForVisitor.Filter(pages);

// need to cast back into ProductPages before using StartPublish property
IEnumerable<ProductPage> filteredPages = filterContent.Take(3).Cast<ProductPage>();
IEnumerable<ProductPage> sortedPages = filteredPages.OrderBy(page => page.StartPublish);

Episerver

Finding pages with a property criteria collection

Module E – Navigating Content – Finding pages

var criteria = new PropertyCriteriaCollection();
criteria.Add(new PropertyCriteria
{

Type = PropertyDataType.LongString,
Name = "PageName",
Condition = CompareCondition.Contained,
Value = "alloy"

});

private readonly IPageCriteriaQueryService finder;

326

Good practice would be to set finder
using constructor parameter injection.

PageDataCollection matches = finder.FindPagesWithCriteria(
(PageReference)currentPage.ContentLink, criteria);

Method located in the IPageCriteriaQueryService interface
FindPagesWithCriteria()

Returns a PageDataCollection with the results

Varying parameters:
A starting point for the search

A set of criteria

Optionally, a required access

Optionally, a language branch

Optionally, a language selector

Example that lists all pages for a certain page type:

public EPiServer.Core.PageDataCollection
FindPagesOfPageType(EPiServer.Core.PageReference pageLink)
{

PropertyCriteriaCollection criteria = new PropertyCriteriaCollection();
PropertyCriteria criterion = new PropertyCriteria();
criterion.Condition = EPiServer.Filters.CompareCondition.Equal;
criterion.Name = "PageTypeID";
criterion.Type = EPiServer.Core.PropertyDataType.PageType;
criterion.Value = Locate.ContentTypeRepository().Load("StandardPage").ID.ToString();
criterion.Required = true;
criteria.Add(criterion);
return

ServiceLocator.Current.GetInstance<IPageCriteriaQueryService>().FindPagesWithCriteria(pageLink,
criteria);
}

Note: For queries that rarely change, you should cache the result that comes back from

FindPagesWithCriteria.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 326

Episerver

Discovering property names to use when finding

327

When using the FindPagesWithCriteria method, you need to supply the name of a property using its

name stored in the CMS database, not the name of a property in the class.

PageData has a property named IsDeleted, but you must use PageDeleted as the name instead.

You can check what name to use by using tools like ILSpy to look inside the class implementation.

Module E – Navigating Content – Finding pages

Criteria are rules used to constrain search results
Specify the property to be examined

Specify the condition by using the CompareCondition enum in EPiServer.Filters namespace

• Equal/NotEqual

• Less/GreaterThan

• Starts/EndsWith

• Contained

Specify the value used for comparison

Specify the type of the value to be examined

Create instances of the PropertyCriteria class
Multiple criteria make up a PropertyCriteriaCollection

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 327

Episerver

Understanding Episerver Search

Episerver Search is a simple but effective solution that will cover the needs of any basic search, both

for CMS Editors and CMS Admins, and for visitors.

Deployed through two NuGet packages:

• Indexing service: Install-Package EPiServer.Search

• CMS integration: Install-Package EPiServer.Search.Cms

Built on the Lucene indexer:

• Stored in the ~\App_Data\Index folder by default.

• Can be browsed using tools such as Luke: https://code.google.com/p/luke

Module E – Navigating Content – Searching indexed content – Episerver Search

329

The Java-based Luke tool

can be useful for

understanding and fixing

indexing problems in

Lucene indexes.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 329

<episerver.search active="true">
<namedIndexingServices defaultService="serviceName">

<services>
<add name="serviceName" accessKey="local"

baseUri="http://localhost:53991/IndexingService/IndexingService.svc" />
</services>

</namedIndexingServices>
<searchResultFilter defaultInclude="true">

<providers />
</searchResultFilter>

</episerver.search>

Episerver

Built-in features of Episerver Search

• Full-text search

• Static facets

• Event driven indexing for instant search results

• Index any type of content

• Access rights-based search result filtering

• Global search: pluggable search interface with ISearchProvider

If more advanced features are needed, then use Episerver Find.

Module E – Navigating Content – Searching indexed content – Episerver Search

330

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 330

Episerver

Searching indexed content with Episerver Search

Module E – Navigating Content – Searching indexed content – Episerver Search

Type Method Parameter(s) Return Type

SearchHandler GetSearchResults IQueryExpression
e.g. FieldQuery, GroupQuery,

and so on.

SearchResults

private readonly SearchHandler searcher;

331

var query = new FieldQuery("alloy");
SearchResults results =

searcher.GetSearchResults(query, page: 1, pageSize: 10);
int hits = results.TotalHits;
Collection<IndexResponseItem> pageOfItems = results.IndexResponseItems;

using EPiServer.Search.Queries.Lucene;

Good practice would be to set searcher

using constructor parameter injection.

Performing a simple query search

• Build a query using EPiServer.Search.Queries.Lucene.FieldQuery(string q)

• Pass the query into SearchHandler.Instance.GetSearchResults(fieldQuery)

• Convert these results to a EPiServer.Search.IndexResponseItem List

• IndexResponseItem contains Content Guid should you want access to the entire Content object

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 331

Episerver

Good practice for search queries

332

• Use GroupQuery to create AND, OR, and NOT groupings

• Limit to specified content types (PageData, in the example)

• Limit to specified language branches

• Search based on access rights

• Add root pages to your search to limit results to pages below that page (see Notes section)

Module E – Navigating Content – Searching indexed content – Episerver Search

var pageTypeQuery = new GroupQuery(LuceneOperator.AND);
pageTypeQuery.QueryExpressions.Add(new ContentQuery<PageData>());
pageTypeQuery.QueryExpressions.Add(new FieldQuery(languageBranch, Field.Culture));

var accessRightsQuery = new AccessControlListQuery();
accessRightsQuery.AddAclForUser(PrincipalInfo.Current, context);
query.QueryExpressions.Add(accessRightsQuery);

http://world.episerver.com/documentation/developer-guides/CMS/search/About-Episerver-full-text-search-client/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 332

See ~\Business\SearchService.cs in the Alloy (MVC) project template for more details.

Types of queries

• AccessControlQuery

• CategoryQuery

• CreatedDateRangeQuery

• FieldQuery

• FuzzyQuery

• GroupQuery

• ItemStatusQuery

• ModifiedDateRangeQuery

• ProximityQuery

• RangeQuery

• TermBoostQuery

• VirtualPathQuery

EPiServer - Simple search and shared blocks

https://www.dcaric.com/blog/episerver-simple-search-and-shared-blocks

Extending EPiServer search - part 2

https://www.dcaric.com/blog/extending-episerver-search-part-2

Episerver

Miscellaneous topics to know about Episerver Search

Limitations

• Search will not index blocks in content areas (by default).

Episerver CMS Advanced Development course shows how to

implement this with code.

Rebuilding the index

• Use Admin view to rebuild the Episerver Search index.

Load Balancing

• In a load balanced environment, install the search service on one of

the servers, and configure that machine as the search service for all.

Module E – Navigating Content – Searching indexed content – Episerver Search

333

Index

Load Balancer

Server A Server B

Server C

Visitors

Editors

CMS DB

Manually re-indexing site content with a hidden feature, as shown in the following screenshot:

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 333

Episerver

Understanding Episerver Find

Episerver Find is based on Elasticsearch, a highly scalable open-source full-text search and analytics

engine. It allows you to store, search, and analyze big volumes of data quickly and in near real time.

Why use Episerver Find?

• Managed Services: Episerver Find is a SaaS/PaaS cloud solution fully managed by Episerver

experts to keep your indexed searches running smoothly.

• Personalized Find: provides advanced AI machine learning optimized search results.

• Integration with Episerver CMS and Commerce: integrates automatically with our other products, for

example, as soon as content is published in CMS it is immediately indexed and appears in results.

• Admin view: Episerver Find has an easy-to-use interface to view statistics and optimize results.

• Friendly .NET API: Episerver Find has an easy-to-use API that wraps the underlying complexity of the

Elasticsearch REST indexing service.

Module E – Navigating Content – Searching indexed content – Episerver Find

335

Sites that use Episerver Find

Arla

http://www.arla.se/

Small Luxury Hotels of the World

http://www.slh.com/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 335

Decompounding
• cheeseburger → cheese burger

• football → foot ball

• blårutigskjortan→ blå rutig skjorta n (the blue checkered shirt)

• banan→ bana n (the trajectory)

• banan→ banana

Installing Episerver Find
• Installed through NuGet

• Requires additional license + create an index in cloud service

• Support for Episerver CMS 6 and higher

• Support for Episerver Commerce

• Requires the full .NET framework (not Client Profile)

• Depends on JSON.NET (Newtonsoft.Json.dll)

Episerver

Built-in features of Episerver Find

• Multi-language stemming

• Deconstruction of words (Swedish and Norwegian)

• Related queries

• Highlighted summaries

• Autocomplete and search as you type

• Search in files or attachments

• Statistics and search optimization

• Best bets, Custom weighting of results

• Find Connectors to websites and news feeds

Module E – Navigating Content – Searching indexed content – Episerver Find

336

A demo index has the following limitations:

• Maximum 10000 documents

• Maximum 5MB request size

• Maximum 25 queries per second

• The index will be removed after 90 days

Sign up for a free demo index:
https://find.episerver.com/

Episerver Find 13, released April 2018: https://world.episerver.com/documentation/upgrading/episerver-find/find-13/

New language routing: https://world.episerver.com/blogs/Jonas-Bergqvist/Dates/2018/4/find-13-new-language-routing/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 336

Episerver

Searching indexed content with Episerver Find

Module E – Navigating Content – Searching indexed content – Episerver Find

private readonly SearchClient searcher;

337

string query = "alloy";
IEnumerable<IContent> results = searcher

.UnifiedSearchFor(query, Language.English)

.Filter(x => x.RolesWithReadAccess().Match("Everyone"))

.GetResults();

using EPiServer.Find;

<episerver.find
serviceUrl="https://es-eu-api01.episerver.net/Plp...GRv"
defaultIndex="episervertraining_index99999" />

https://world.episerver.com/documentation/Items/Developers-Guide/EPiServer-Find/11/DotNET-Client-API/NET-Client-API/

Episerver Find

Application

Q

u

e

r

y

J

s

o

n

Find client API

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 337

Episerver

Learn more about Episerver Find and alternative search providers

338

Episerver Find

http://find.episerver.com/

Learn more:

• Episerver CMS Advanced Development (3 days)

• Episerver Find for Editors (1 day)

• Episerver Find for Developers (1 day)

Apache Solr http://lucene.apache.org/solr/

ElasticEpiserver https://github.com/Altinn/elasticsearch-episerver

Forward Search http://www.forwardsearch.dk/

Module E – Navigating Content – Searching indexed content – Episerver Find

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 338

EpiserverEpiserver

Exercises E1 to E5 – Navigating content

Module E – Navigating Content

Estimated time: 60 minutes

Prerequisites: Exercises B1 – B4.

1. Creating a page listing block

2. Creating a news landing page

3. Improving navigation menus

4. Creating a search page for visitors using

Episerver Find or Episerver Search

5. Adding a search box to the top navigation

menu

339

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 339

Episerver

Module F

Working with
Episerver Framework

Episerver CMS – Development Fundamentals

In this module, you will learn about Episerver architecture and
framework, and know the important classes and abstractions.

345

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 345

Episerver

Module agenda

346

• Overview

• Understanding Dynamic Data Store (DDS)

• Understanding BLOB providers

• Understanding REST APIs

• Implementing Initialization Modules

• Understanding the initialization system

• Handling content events

• Implementing Scheduled Jobs

• Scheduled jobs and multiple sites and servers

Module F – Working with Episerver Framework

• Common APIs

• Programmatically creating a new page

• Programmatically updating an existing page

• Programmatically creating a new shared block

• Programmatically updating an existing shared block

• Programmatically deleting content

• Programmatically working with sites

• Exercises F1 to F5 – Working with Episerver

Framework

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 346

The areas of the platform that this course is focusing on are the Episerver CMS product and the Website built

upon it using the CMS API.

The Episerver Framework is briefly discussed in this section. More information is available in the Episerver

Framework SDK.

The key functions of the Episerver Framework:
Contains common UI and API functionality intended to be used by all Episerver products

Handles license management

• All product licenses are contained in one file: License.config.

Includes support for communication between servers in a load balanced setup, using global event handling.

• Examples of update of nodes in load-balanced environments:

• Content is added or updated in a page or block

• The editor updates a file

Episerver

Understanding Episerver Framework

348

Module F – Working with Episerver Framework – Understanding Episerver Framework

Website

Add-ons

Episerver CMS Episerver Commerce

E
p

is
e

rv
e

r
F

in
d

Episerver Framework

• User Interface

• Dashboard

• Gadgets

• Data Access (CMS & DDS)

• Localization Service

• Visitor Groups Personalization

• Initialization System

• Content Events

• BLOB Provider

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 348

Dynamic Data Store offers an API and infrastructure for saving, loading and searching of both compile time

data types (.NET object instances) and runtime data types (property bags) to the database

• Dynamic Data Store is essentially an object-relational mapper

Stores are created, obtained and deleted using the DynamicDataStoreFactory class.

• The class has a single instance which can be obtained from the static Instance property.

Dynamic Data Store uses the ‘big table’ approach to storing data (the default DDS “big table” is called

tblBigTable).

Episerver

Understanding Dynamic Data Store (DDS)

349

DDS saves custom objects that are not content in the CMS

database.

• Website custom feature: A user rating for a page.

• CMS features:

• Visitor Group definitions.

• XForms and Episerver Forms visitor form submissions.

DDS is an ORM for .NET types and property bags.

• DynamicDataStoreFactory, IDynamicData

• tblBigTable in the CMS database

Module F – Working with Episerver Framework – Understanding Episerver Framework

DDS is covered in more detail in the Episerver CMS – Advanced Development training course.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 349

BLOB (Binary Large Object) providers is a framework designed to store large amounts of binary data in a more

optimized and cost-effective solution such as cloud storage, instead of in the database. The Episerver

platform supports BLOB storage of assets using a provider-based setup, and has a built-in file BLOB provider.

You have the following options:

• Built-in BLOB provider. Episerver has a built-in BLOB provider for media files such as images, videos

and documents. By default this provider will store files on local disc or a file share which will be

defined during installation.

• Customized BLOB provider. You can also develop and configure your own customized BLOB provider

for your specific hosting environment. As an example, BLOB providers for Microsoft Azure and Amazon

Web Services are available via the Episerver Nuget feed.

Episerver

Understanding BLOB providers

350

BLOB (Binary Large Object) providers are designed to store large

amounts of binary data, e.g., images, videos, documents.

• By default, the built-in BLOB provider stores BLOBs on local

filesystem, or a network file share.

• You can develop custom BLOB providers.

Episerver has created custom BLOB providers for:

• Microsoft Azure Blob Storage

• Amazon Web Services S3

Module F – Working with Episerver Framework – Understanding Episerver Framework

Install-Package EPiServer.Azure

Folder name is the content GUID.

File names are the content versions.

Install-Package EPiServer.Amazon

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 350

Episerver

Understanding Service API

351

Service API enables integration with

external systems such as PIM, DAM and ERP.

Use Service API with Episerver CMS to:

• Import and export of "episerverdata" files.

Use Service API with Episerver Forms to:

• Import and export form submissions.

User Service API with Media to:

• Import media assets.

Use Service API with Episerver Commerce to:

• Bulk import, export, and asset link between media and catalog data.

• Perform REST CRUD operations on catalogs, nodes, entries, and warehouses.

Module F – Working with Episerver Framework – Understanding Episerver Framework

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 351

Episerver

Understanding Content Delivery API

352

Allows you to get content, i.e. anything that implements IContent, via a RESTful API, for example:

Content Delivery API has a dependency on Episerver Find for its search capabilities.

Getting Started with Content Delivery API: https://mmols.io/getting-started-with-the-episerver-content-delivery-api/

Module F – Working with Episerver Framework – Understanding Episerver Framework

GET /api/episerver/content/{referenceORguid}

Install-Package –ProjectName AlloyDemo EPiServer.ContentDeliveryApi

GET /api/episerver/search/content/?query=alloy&filter={OData 4 syntax}&personalize=true

Content Delivery API version 1.0 (beta) is not cross-platform, it has a dependency on Episerver

Find, and it is distributed as a single NuGet package. Future versions will be broken into smaller

packages to remove dependencies for some features and to enable cross-platform use.

Episerver Content Api
https://sdk.episerver.com/ContentDeliveryAPI/Index.html

Content Delivery API
https://world.episerver.com/documentation/developer-guides/CMS/Content/content-delivery-api/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 352

Episerver

Understanding the initialization system

Minimum requirements

• Implement IInitializableModule and decorate with [InitializableModule]

Optional

• Decorate with [ModuleDependency(typeof(SomeModule))] to make sure SomeModule is executed

before your initialization module. The project item template does this by default.

• Implement IConfigurableModule to register or

replace a DI service.

Initialize method is called once if no exception

thrown, but if an exception occurs, then initialization

is stopped, and retried at next incoming request, so make sure that your code idempotent.

Module F – Working with Episerver Framework – Implementing Initialization Modules

354

http://world.episerver.com/documentation/developer-guides/CMS/initialization/

Examples of modules:
ClassFactoryInitialization.cs in Alloy: Use their own control to render content areas.

Hooks up to the initialization to register their own class to be used when content areas are rendered.

Dependency sorting
The initialization system has a dependency sorting algorithm to decide the execution order of the modules

Example: If you want to log when pages are saved in your website, the logging and DataFactory has to exist. To

ensure this you use the dependency sorting algorithm by using the ModuleDependency attribute on your class:

[ModuleDependency(typeof(ModuleThatIDependOn))].

Execution engine
The execution engine hooks into ASP.NET to handle re-execution of initialization modules in the face of

exceptions during startup.

Example: removing the suggested page types feature

When adding a new page, the first group is named Suggested Page Types and contains recently used page

types. You can remove this by ejecting the implementation of IContentTypeAdvisor like this:

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 354

[InitializableModule]
[ModuleDependency(typeof(EPiServer.Web.InitializationModule))]
public class RemoveSuggestedPageTypesInitializationModule : IConfigurableModule
{

public void ConfigureContainer(ServiceConfigurationContext context)
{

context.Container.EjectAllInstancesOf<IContentTypeAdvisor>();
}
public void Initialize(InitializationEngine context) { }
public void Uninitialize(InitializationEngine context) { }

}

Episerver

Handling content events

Module F – Working with Episerver Framework – Implementing Initialization Modules

Before events After events

CreatingContent CreatedContent

CheckingInContent CheckedInContent

SavingContent SavedContent

PublishingContent PublishedContent

MovingContent MovedContent

LoadingChildren LoadedChildren, FailedLoadingChildren

LoadingContent LoadedContent, FailedLoadingContent

DeletingContent DeletedContent

DeletingContentLanguage DeletedContentLanguage

And many more... And many more...

355

Triggered by a call to

IContentLoader.GetChildren()

http://marisks.net/2017/01/22/episerver-content-events-explained/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 355

[InitializableModule]
[ModuleDependency(typeof(EPiServer.Web.InitializationModule))]
public class PreventPublishingInitializationModule : IInitializableModule
{

private bool executed = false;
private IContentEvents events;
public void Initialize(InitializationEngine context)
{

if (!executed)
{

events = ServiceLocator.Current.GetInstance<IContentEvents>();
events.PublishingContent += Events_PublishingContent;
executed = true;

}
}

private void Events_PublishingContent(object sender, EPiServer.ContentEventArgs e)
{

if ((e.Content as PageData).Name.ToLower().Contains("bad word"))
{

e.CancelAction = true;
e.CancelReason = "Content names cannot contain \"bad word\".";

}
}

public void Uninitialize(InitializationEngine context)
{

events.PublishingContent -= Events_PublishingContent;
}

}

private void Events_MovedContent(object sender, EPiServer.ContentEventArgs e)
{

// does nothing because you cannot cancel an "after" event
e.CancelAction = true;
e.CancelReason = "This does nothing!";

}

From version 7.5 of Episerver the Windows Scheduler Service is no longer used in Episerver CMS sites. The

Scheduled jobs have always been running inside the site, the scheduler service just pinged the site to make

sure it was up and running. Since its not compatible with either Azure or xcopy deployment most sites will

have website monitoring anyway so moving the responsibility for keeping the site up and running to the

hosting environment seemed like a better approach.

Since scheduled jobs are executed on the site a requirement for the job to be executed is that the site is up

and running. This can be done for example by using IIS feature "Application Initialization" or having a website

supervisor that periodically pings the site.

Automatic Emptying of Recycle Bin

• Must be activated for emptying to be done automatically.

• State how often emptying should be done and activate.

• Never deletes pages that have been there less than 30 days.

Episerver

Understanding scheduled jobs

357

In a default installation of Episerver CMS there are eleven predefined scheduled jobs:

1. Automatic Emptying of Recycle Bin [A]

2. Publish Delayed Page Versions [B] (for scheduled publishing)

3. Archive Function [C] (for expired content)

4. Remove Permanent Editing [B]

5. Mirroring Service [C]

In Admin view, you can configure the jobs and see the history of jobs that have been executed.

Scheduled jobs are hosted and run inside the website, so if the

application pool hosting your site terminates, which it will be

configured to do after 20 minutes of inactivity by default, then the

scheduled jobs will not run. Ping the site regular to keep it running.

Module F – Working with Episerver Framework – Implementing Scheduled Jobs

6. Subscription [C]

7. Clear Thumbnail Properties [C]

8. Link Validation [C] (for Link Status report)

9. Remove Unrelated Content Assets [A]

10. Change Log Auto Truncate [A]

11. Remove Abandoned BLOBs [A]

[A] once a week

[B] once an hour

[C] inactive

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 357

tblScheduledItem contains information about scheduled jobs and if they are running, as shown in the

following screenshot:

Episerver

Scheduled jobs and multiple sites and servers

If several web servers share a database, such as in a load-balanced

scenario, you can control which server executes scheduled jobs.

• Set the enableScheduler attribute to true on the applicationSettings configuration element on the

server that should execute the jobs, and to false on the other servers.

If several servers are enabled to run scheduled jobs, then during execution the first server that starts

executing a job marks it in the database as executing, so the other servers do not execute that job in

parallel.

Module F – Working with Episerver Framework – Implementing Scheduled Jobs

358

<episerver>
<applicationSettings enableScheduler="false"

CMS
DB

Server
A

Server
B

Server
C

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 358

Add a new project item of type Scheduled Job and implement its Execute method as shown below. Unhandled

exceptions are automatically caught and returned to the user interface as a “failed” job.

Episerver

Building custom scheduled jobs

You can build your own custom scheduled jobs using the full

capabilities in the .NET Framework.

For example, a scheduled job that reads external data in any format,

and inserts it in the CMS using IContentRepository.

Scheduled jobs are often preferred to other techniques because it is

easier to work with:

• The developer has more control.

• Less development is needed in comparison.

http://world.episerver.com/documentation/developer-guides/CMS/scheduled-jobs/

Module F – Working with Episerver Framework – Implementing Scheduled Jobs

359

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 359

public override string Execute()
{

// if this job is run manually then this will NOT be null and the current user
// permissions will be checked, else, we might need to assign higher permissions.
if (HttpContext.Current == null)
{

PrincipalInfo.CurrentPrincipal = new GenericPrincipal(
new GenericIdentity("Scheduled Job Demo"),
new[] { "Administrators" });

}

OnStatusChanged(string.Format("Starting execution of {0}", GetType()));

var r = new Random();
int percentComplete = 0;

while (percentComplete < 100)
{

System.Threading.Thread.Sleep(2000);
percentComplete += r.Next(5, 15);
OnStatusChanged(string.Format(

"{0}% complete. Please wait...", percentComplete));
if (_stopSignaled)
{

return "Stop of job was called";
}

}
return "Completed successfully!";

}

Episerver

Restartable scheduled jobs

360

If IIS crashes or is recycled when a job is running, the scheduler runs the job on the next scheduled

time by default. If you mark it as a restartable job then it is started again immediately. The job can

restart on any available server.

The job should also be implemented in such a way that it can be started repeatedly. For example, if the

job processes data, it should be able to continue where it was aborted. It is also recommended to

implement a stoppable job, but be aware that the Stop method will only be called for controlled

shutdowns, and not for uncontrolled shutdowns such as an IIS crash or other external changes. There

are a maximum number of 10 start attempts per job.

Requires Episerver CMS 10.8 or later.

Module F – Working with Episerver Framework – Implementing Scheduled Jobs

[ScheduledPlugIn(DisplayName = "My Scheduled Job", Restartable = true)]
public class MyScheduledJob : ScheduledJobBase

Scheduled jobs improvements with Episerver CMS 10.3 or later

You don't need to inherit from base class EPiServer.Scheduler.ScheduledJobBase. All you need is to

have static string Execute() method. This allows you to implement jobs without any dependencies on the

EPiServer assemblies.

You can use the IScheduledJobFactory interface and implementation to use proper dependency injection

technique.

You can execute scheduled jobs using the IScheduledJobExecutor interface and implementation.

Read more on Wałdis Iljuczonok’s blog:

https://blog.tech-fellow.net/2016/12/28/scheduled-jobs-updates/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 360

Episerver

Loading content inside a scheduled job

361

Content loaded from database and added to cache by scheduled jobs have a shorter cache expiration

(default 1 minute), both since it is unlikely that the content will be used again and to keep down

memory usage of long running jobs.

It is possible to customize the expiration that is being set on content loaded from the database using

the ContentCacheScope class, including disabling caching by setting TimeSpan.Zero:

Requires Episerver CMS 11.1 or later.

Module F – Working with Episerver Framework – Implementing Scheduled Jobs

using (var x = new ContentCacheScope { SlidingExpiration = TimeSpan.FromSeconds(10) })
{

// code to get lots of items of content using IContentLoader
}

Even though it is also possible to disable the cache completely, that

is not recommended since it puts a lot of strain on the database

(caused by language fallbacks and other features, a single call to

get content might generate several calls behind the scenes).

Performance improvements in CMS 11
https://world.episerver.com/blogs/Per-Bjurstrom/Archive/2018/3/performance-improvements-in-cms-11/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 361

AccessLevel enum

When calling IContentRepository.Save method, you can pass an AccessLevel. This is the minimal level that the

current user (i.e. anonymous or logged in visitor or editor) must have in order for the method to succeed. If the

current user does not have that minimal level then the Save method throws an exception. Therefore, if you

pass the NoAccess value, you are allowing every user to successfully call the method.

SaveAction enum

One of the improvements in CMS 10 is to the IContentRepository Save API and its SaveAction enum values:

• CheckIn - Checks in a version indicating that it is ready to be published

• CheckOut - Checks out a version to indicate that it is being worked on. (New in CMS 10)

• RequestApproval – Indicate that the version is ready for an approval review.

• Reject - Rejects a version. This is normally done after a review has been done.

• Publish - Publishes a version. The currently published version will automatically transition to a previously

published state.

• Schedule – Used to schedule a version for automatic publishing at a later date. (New in CMS 10)

• Save - deprecated (it won’t appear in IntelliSense but it would compile)

Improving the Save experience in CMS 10

http://world.episerver.com/blogs/Henrik-Nystrom/Dates/2016/10/improving-the-saving-experience/

Content versions and states

A content item that supports different statuses implements IVersionable. The interface contains a property

Status that specifies the current status of the content version.

A content version can have one of the following different statuses:

• NotCreated

• CheckedIn, CheckedOut

• AwaitingApproval, Rejected

• DelayedPublished, Published, PreviouslyPublished

Episerver

Programmatically creating a new page

363

• Generate a new page using IContentRepository and set its parent:

• Set the page’s properties:

• Save the page with appropriate save action and access level:

Module F – Working with Episerver Framework – Common APIs

ContentReference newPagesRef = repo.Save(newsPage,
EPiServer.DataAccess.SaveAction.Publish,
EPiServer.Security.AccessLevel.NoAccess);

NewsPage newsPage = repo.GetDefault<NewsPage>(parentLink: PageReference.StartPage);

newsPage.Name = "Today’s news";
newsPage.MainBody = new XhtmlString("<p>This is produced programmatically.</p>");

IContentRepository repo;

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 363

Episerver

Programmatically updating an existing page

364

Content is read-only when retrieved through Get method so:

1. Call CreateWritableClone method of any IReadOnly object to be able to make changes.

2. Cast the content item into the specific content type you expect and check if its not null.

3. Set required page properties.

4. Save the page with an appropriate save action and access level depending on scenario.

Module F – Working with Episerver Framework – Common APIs

ContentReference pageLink = ...;
NewsPage newsPage = repo.Get<PageData>(pageLink).CreateWritableClone() as NewsPage;
if (newsPage != null)
{

newsPage.MainBody = new XhtmlString("<p>This was updated programmatically.</p>");
repo.Save(newsPage, EPiServer.DataAccess.SaveAction.CheckIn,

EPiServer.Security.AccessLevel.Edit);

IContentRepository repo;

1

3

4

2

Align status transitions, events and required access rights when saving

http://world.episerver.com/documentation/Release-Notes/ReleaseNote/?releaseNoteId=CMS-2078

CMS 10 and later Save API is based on the following principles:

• SaveAction.Default replaces SaveAction.None.

• SaveAction.CheckOut should be used to check out the current content version.

• Saving an item, regardless of SaveAction should update the current version, except when status is

Published or PreviouslyPublished, in which case a new version is created.

• No status changes are allowed on the current version if status is Published or PreviouslyPublished.

• When ForceCurrentVersion is used on a Published or PreviouslyPublished version, it must be on its own

(Default) or paired with the Publish action in case of Published content.

• Saving a content item without a version should be identical to saving the version that is actually loaded.

• SaveAction.Publish (or Default) should be the only action allowed on Unversioned content.

• Invalid SaveAction combinations should throw an InvalidOperationException, for example, using both

ForceCurrentVersion or ForceNewVersion should be invalid.

• Create access is required if no previous version exists and when saving a new language branch.

• Edit access is required to CheckIn, CheckOut, or RequestReview a version.

• Publish access is required to Publish or Schedule a version or update a Published or DelayPublished

version.

• IContentRepository Save extensions methods without a required access parameter pass

AccessLevel.Undefined to the Save method.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 364

Episerver

Programmatically creating a new shared block

365

Creating a shared block is similar to creating a page, except BlockData-derived classes do not

implement IContent so you must cast the block instance to IContent before you can set the Name

property or call the Save method:

Module F – Working with Episerver Framework – Common APIs

ContentReference forAllSites = ContentReference.GlobalBlockFolder;
var editorial = repo.GetDefault<EditorialBlock>(parentLink: forAllSites);
editorial.MainBody = new XhtmlString("<p>Hello World!</p>");
var content = editorial as IContent; // must cast as IContent to change Name or Save()
content.Name = "MyNewSharedBlock";
ContentReference newBlocksRef = repo.Save(content,

EPiServer.DataAccess.SaveAction.Publish,
EPiServer.Security.AccessLevel.NoAccess);

IContentRepository repo;

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 365

Episerver

Programmatically updating an existing shared block

366

Updating a shared block is similar, except:

• We would only need to cast to IContent if we need to change the Name property.

• This example uses a casting expression instead of as keyword when we call Save because that

method requires an object that implements IContent.

Module F – Working with Episerver Framework – Common APIs

ContentReference blockLink = ...;
EditorialBlock editorial =

repo.Get<BlockData>(blockLink).CreateWritableClone() as EditorialBlock;
editorial.MainBody = new XhtmlString("<p>Hello again!</p>");
repo.Save((IContent)editorial,

EPiServer.DataAccess.SaveAction.CheckOut,
EPiServer.Security.AccessLevel.Edit);

IContentRepository repo;

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 366

Other methods to permanently delete content include:

void Delete(
ContentReference contentLink,
bool forceDelete,
EPiServer.Security.AccessLevel access)

void DeleteChildren(
ContentReference contentLink,
bool forceDelete,
EPiServer.Security.AccessLevel access)

void DeleteLanguageBranch(
ContentReference contentLink,
string languageBranch,
EPiServer.Security.AccessLevel access)

Episerver

Programmatically deleting content

367

To delete content:

• A “hard” delete uses the Delete method. This is permanent. forceDelete ignores related content.

• A “soft” delete uses the MoveToWastebasket or the Move methods. This allows the content to be

restored within 30 days, unless the Trash is emptied manually. The MoveToWastebasket method does

not allow access rights to be overridden so use Move for more power.

Module F – Working with Episerver Framework – Common APIs

repo.Delete(contentReference, forceDelete: true, access: AccessLevel.NoAccess);

IContentRepository repo;

repo.Move(contentReference, destination: ContentReference.WasteBasket,
requiredSourceAccess: AccessLevel.NoAccess,
requiredDestinationAccess: AccessLevel.NoAccess);

repo.MoveToWastebasket(contentReference);

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 367

Episerver CMS – Advanced Development training course covers more of the Episerver Framework and

Episerver CMS APIs.

Episerver

Programmatically working with sites

368

To get the site definition for the current request:

To get a list of all sites in a multisite project:

To create a new site:

Module F – Working with Episerver Framework – Common APIs

var site = SiteDefinition.Current;

IEnumerable<SiteDefinition> sites = siterepo.List();

ISiteDefinitionRepository siterepo;

siterepo.Save(new SiteDefinition {
Id = Guid.NewGuid(), Name = "New Alloy Site",
SiteUrl = new Uri("http://localhost:54362"),
StartPage = new ContentReference(99)

});

Other methods:

Get and Delete

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 368

EpiserverEpiserver

Exercises F1 to F6 – Working with
Episerver Framework

Module F – Working with Episerver Framework

Estimated time: 60 minutes

Prerequisites: Exercise A1.

Use AlloyDemo project for these exercises.

1. Exporting and importing content.

2. Working with Episerver content APIs.

3. Listening for content events

4. Implementing scheduled jobs.

5. Implementing soft and hard deletes.

6. Learning from Episerver’s assemblies.

369

It might be worth creating a fresh AlloyDemo website project in

a new solution rather than using the one from earlier. Choose

Episerver Search as before, but you do not need the Episerver

Forms and A/B testing add-ons.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 369

Episerver

Module G

Optimizing, Securing,
and Deploying

Episerver CMS – Development Fundamentals

In this module, you will learn about deployment options and tools,
and how to secure and optimize an Episerver website.

376

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 376

Episerver

Module agenda

Module G – Optimizing, Securing, and Deploying

377

• Optimizing

• Multi-site

• Deployment: http://world.episerver.com/documentation/developer-guides/CMS/Deployment/

• Securing

• Logging

• DXC Service

• Exercises G1 to G3 – Optimizing, Securing, and Deploying

Episerver Trust Center
http://www.episerver.com/about/privacy/trust-center/

Episerver Web Performance
https://niteco.com/blogs/episerver-web-performance/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 377

Episerver

Understanding the types of caching

• Object (aka page) caching: when a content item is requested it is loaded from the database and

stored in the object cache on the website server for a minimum of 12 hours (by default).

The object cache uses in-proc memory by default, but it can be configured to use other providers,

for example Redis, for highly performant distributed caching.

• Output caching: when an HTTP response is returned from the server, it can be cached. To enable it,

(1) apply [ContentOutputCache] and configure <applicationSettings> in Web.config, or

(2) write code to control the Response.Cache object.

CDN and Browser caching: CDNs and browsers look at the HTTP response headers to determine

what and how long to cache. Control this through output caching.

Module G – Optimizing, Securing, and Deploying – Optimizing by caching

<episerver>
<applicationSettings pageCacheSlidingExpiration="12:00:00"

379http://world.episerver.com/documentation/developer-guides/CMS/caching/

Object Cache

• Based on the ASP.NET Cache.

• Automatically caches all objects in Episerver CMS that is being requested from the API, via for example

IContentRepository.

• Only read-only objects are stored to enable great performance.

• Has a few advanced characteristics to improve scalability. For example, it uses an optimistic locking

approach when multiple threads are reading the same data they will all piggyback on the same database

calls to avoid putting to much load on the database for “hot” objects that have not yet been cached.

Types of caching

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 379

DB

Object Cache

File Caching

Browser

Caching
(static files)

Output

Caching
(markup)

files

website

client server

client or server

server

Episerver

Making the most of output caching

For static responses, set an Expires (HTTP 1.0) or Cache-Control (HTTP 1.1) header of one year.

• Expires is limited to a HTTP date so browser and server times need to be synchronized.

• Cache-Control is more flexible. public means CDNs can also cache the content. private would mean

only the browser should. max-age is an integer value of seconds (31536000 = one year).

• Include a version identifier in the path or filename to allow intermediary proxies like CDNs to store

and serve them indefinitely, e.g. jquery-3.1.0.min.js

Module G – Optimizing, Securing, and Deploying – Optimizing by caching

Expires: Thu, 7 Nov 2018 20:00:00 GMT

Cache-Control: public, max-age=31536000, must-revalidate

380

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control

Output Caching
• Based on ASP.NET Output Caching.

• This is an effective method since the entire rendered markup of a full or partial view will be cached for a

specified duration.

• The cache is automatically invalidated when content in Episerver CMS is published.

• You can define dependency rules for the cache, as well as which parts of the website should be affected.

Russian Doll caching
The idea with Russian doll caching is to cache items in several layers where each layer has a dependency on

next layer.

https://world.episerver.com/blogs/Johan-Bjornfot/Dates1/2017/12/html-caching-in-redis/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 380

Episerver

Output caching static application files

For performance reasons, it’s a good idea to cache static application files for about a year.

Find the Web.config’s <system.webServer> element.

Then modify the <clientCache> element to increase the max age from one day to one year, as shown:

But what happens when you want to change the contents of a static file that does not include a version

number or date in its name, like site.css? We need to ”bust” the cached version.

You can write some code that adds a ”fingerprint” to each file automatically. This blog article shows an

example of how: http://madskristensen.net/post/cache-busting-in-aspnet

Module G – Optimizing, Securing, and Deploying – Optimizing by caching

<staticContent>
<clientCache cacheControlMode="UseMaxAge" cacheControlMaxAge="365.00:00:00" />

381

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 381

Episerver

Output caching content asset files

For performance reasons, it’s a good idea to cache content asset files for about a year.

Add the following in Web.config’s <configSections> element:

Then add the following element after the end of the </configSections> element:

You can also set cacheControl and enableOutputCache:

Module G – Optimizing, Securing, and Deploying – Optimizing by caching

<staticFile expirationTime="365.00:00:00" />

382

<section name="staticFile" allowLocation="true" type=
"EPiServer.Framework.Configuration.StaticFileSection, EPiServer.Framework.AspNet" />

<staticFile expirationTime="365.00:00:00"
cacheControl="Private" enableOutputCache="true" />

cacheControl defaults to Auto, which uses Private for authenticated visitors and Public for anonymous.

Required for CMS 11

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 382

Episerver

Output caching dynamic content

To enable output caching, you can use Episerver’s content-aware ContentOutputCache attribute:

Only applies to GET requests from anonymous visitors.

• Logged in users will never receive cached responses.

• Content personalized with visitor groups will also not be cached.

Module G – Optimizing, Securing, and Deploying – Optimizing by caching

// response cached for 20 minutes
[ContentOutputCache(Duration = 1200)]
public ActionResult Index(ProductPage currentPage)

<episerver>
<applicationSettings
httpCacheability="Public"
httpCacheExpiration="02:00:00"

// response cached for 2 hours
[ContentOutputCache]
public ActionResult Index(ProductPage currentPage)

383

Default is 00:00:00

Do not use Microsoft’s [OutputCache]
because it will not be invalidated when

content is published!

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 383

Episerver

Using Response.Cache to control output caching of dynamic content

Set cacheability and max-age in the HTTP response headers just before returning an action result

(TimeSpan will automatically convert into seconds):

To set a sliding expiration so each request renews the cache:

To set Expires header (the older HTTP 1.0 standard):

Module G – Optimizing, Securing, and Deploying – Optimizing by caching

Response.Cache.SetCacheability(HttpCacheability.Public);
Response.Cache.SetMaxAge(TimeSpan.FromDays(1));
return View();

Response.Cache.SetSlidingExpiration(true);

Response.Cache.SetExpires(DateTime.Now.AddDays(1));

384

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 384

Configuring Remote Events

Episerver

Invalidating items in the caches using Remote Events

Remote Events is the Episerver feature that invalidates content items stored in the object cache and

responses stored in the output cache in a load balanced deployment.

• Cached content is removed when a new version of the content is published.

• To enable Remote Events, add the following to the episerver element in Web.config:

Remote Events can be implemented using:

• WCF via UDP or TCP in an on-premise deployment.

• Azure Service Bus in a cloud deployment like DXC Service.

Module G – Optimizing, Securing, and Deploying – Optimizing by caching

385

<episerver>
<sites>

<site>
<siteSettings enableEvents="true" enableRemoteEvents="true" />

Copyright © Episerver AB. All rights reserved.

Page 385

Episerver CMS – Development Fundamentals

<services>
<service name="EPiServer.Events.Remote.EventReplication">
<endpoint name="RemoteEventServiceEndPoint"

contract="EPiServer.Events.ServiceModel.IEventReplication"
binding="netTcpBinding" bindingConfiguration="RemoteEventsBinding"
address="net.tcp://localhost:5000/RemoteEventService" />

</service>
</services>

<client>
<endpoint name="customer-10.11.12.14"

address="net.tcp://10.11.12.14:5000/RemoteEventService"
binding="netTcpBinding" bindingConfiguration="RemoteEventsBinding"
contract="EPiServer.Events.ServiceModel.IEventReplication"/>

</client>

<bindings>
<netTcpBinding>
<binding name="RemoteEventsBinding"

portSharingEnabled="false">
<security mode="None"/>

</binding>
</netTcpBinding>

</bindings>

On server with IP address: 10.11.12.13

Connect to

server with IP

address:

10.11.12.14

Episerver

Optimizing scalability by disabling session state

387

Most of Episerver does not use session state, but the following does:

• Episerver CMS: Export/Import

• Visitor Group criteria: Referrer, Search Word, Landing URL, Visited Category, Visited Page, Number

of Visits, Submitted Form, Time on Site

• Episerver Find: tracking - can use current session ID, but will fall back to current user identity name.

• Episerver Forms: use cookies to identify visitors, and DDS as persistent storage. When DDS cannot

be written to, Forms use a session state-based storage (IVolatileStorage), for example in form steps.

• Captcha validator uses session state, but ReCaptchaValidator can be used instead.

• Some common add-ons:

• Self-Optimizing Block

• Google Analytics - will fall back to request state if session state is disabled.

Module G – Optimizing, Securing, and Deploying – Miscellaneous optimizations

<sessionState mode="Off" />

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 387

Episerver

Optimizing tree performance

388

If the Pages tree is slow, you can improve its performance with a configuration setting named

uiOptimizeTreeForSpeed. The default value is false.

If set to true, the Pages tree will not evaluate a node’s access rights and language availability when it

becomes visible. This will increase performance when displaying large tree structures.

This setting also affects the legacy trees that are used in Admin view. All nodes will show the expand

icon [+] because the setting disables the checks for children to improve performance.

Module G – Optimizing, Securing, and Deploying – Miscellaneous optimizations

<episerver>
<applicationSettings

uiOptimizeTreeForSpeed="true" ... />

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 388

Episerver

Optimizing database performance and availability

389

Episerver CMS supports several SQL Server high-availability options for availability and performance of

the database. A read scale availability group provides replicas for read-only workloads but not high

availability. An Always On availability group provides high availability, disaster recovery, and read-scale

balancing. Learn more about SQL Server Always On Availability Groups:

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/overview-of-always-on-availability-groups-sql-server

SQL Server has an older technology named database mirroring that should be avoided for new

development projects because it will be removed in a future version of SQL Server:

https://docs.microsoft.com/en-us/sql/database-engine/database-mirroring/database-mirroring-sql-server

Do not confuse SQL Server availability groups or database mirroring with the Mirroring feature in

Episerver CMS that is legacy, does not work with DXC Service, and should be avoided:

https://world.episerver.com/documentation/developer-guides/CMS/Deployment/mirroring/

Module G – Optimizing, Securing, and Deploying – Miscellaneous optimizations

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 389

Episerver

Optimizing images

390

Serve and process images from Episerver Media folders using ImageResizer.

https://github.com/valdisiljuconoks/ImageResizer.Plugins.EPiServerBlobReader

Install as a NuGet package:

http://nuget.episerver.com/en/OtherPages/Package/?packageId=ImageResizer.Plugins.EPiServerBlobReader

Module G – Optimizing, Securing, and Deploying – Miscellaneous optimizations

Install-Package ImageResizer.Plugins.EPiServerBlobReader

@using ImageResizer.Plugins.EPiServer

Clean and unique media URLs with ImageResizer.NET presets
https://world.episerver.com/blogs/stephan-lonntorp/dates/2018/1/clean-and-unique-image-urls/

Optimize your images with ImageProcessor
https://hacksbyme.net/2018/05/12/optimize-your-images-with-imageprocessor/

Clean and unique URLs for EPiServer, with support for using ImageResizing.NET presets in a

cleaner way

Whenever a change is made to a media item, a new hash is generated. This hash is then used to uniquely

identify this version of the item. If the media item is changed, the old url will generate a permanent redirect to

the new url. This is done to enable long term caching for media. By default this cache header is set to 365

days, using max-age. This can be changed by adding an appSetting with key "uufp:CacheMaxAgeTimeSpan",

and a value of a timespan format string.

What does this have to do with image resizing? Nothing. But the fun doesn't stop here. To top things off, this

add-on adds the ability to generate prettier URLs, without all that querystring dirt. By default, the preset

keyword is "optimized", but this can be changed by adding an appSetting with key "uufp:BaseSegment", and a

string value of your choosing.

If a request is made for a preset that doesn't exist, it will result in a 404.

Given that the defaults are left as-is, if there's an ImageResizer preset with the name "test", and a media item

with the url "/globalassets/my-media.png", calling the url "/optimized/test/globalassets/my-media.png" will

issue a redirect to "/optimized/test/<hash>/globalassets/my-media.png", where <hash> is an 8 character

long calculated hash for that media item, based on its last saved date. That URL will then give you the media

item, with the preset applied, and cache headers that will cache the item for a year.

https://github.com/defsteph/UniqueUrlFolderPresets

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 390

Episerver

Understanding multi-site

Episerver CMS is multi-tenant, meaning that a single running

instance of the Episerver CMS can host multiple websites using a

shared database and code base. We call this multi-site.

Websites in a multi-site setup can share the same content assets,

such as media files and blocks, by putting them in For All Sites.

You also can have a site-specific folder, For This Site, for content

that should not be shared between sites.

Module G – Optimizing, Securing, and Deploying – Multi-site

392

You have a single CMS site as a base (default site) and let an administrator create additional new sites

that share the same root page, database, and code base. The additional sites are automatically

mapped and require no additional configuration (if the base site is mapped to wild card), or need

manual configuration of the host name.

http://world.episerver.com/documentation/developer-guides/CMS/Deployment/Setting-up-multiple-sites/

Multi-site – setup requirements

• Each site must have a unique URL and start page in the content tree.

• You cannot nest start pages.

• A multi-site license defining the maximum number of sites from which the installation is licensed.

• IIS must be configured without host headers if you add new sites without making changes to the server

(because that would require an administrator to manually add new host headers when you add new sites).

• All sites must have the same root path, which must be identical to what is configured in IIS. You cannot

have one site as a virtual directory and another as an IIS site.

If you configure the IIS application to respond to any host name, then you can launch new sites from the CMS

admin view without additional configuration.

You need only a start page and a URL for the new site. The URL and start page are stored in the database, and

new sites are automatically provisioned.

By default, one of the installed sites has the * (wild card) host mapping. You can also add additional hosts

mappings, such as partner.examplesite.com or customer.examplesite.com, optionally bound to a specific

language.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 392

Episerver

Production system requirements

• What are the operating system, web server, and .NET requirements for a production server?

• OS: Windows Server 2012, 2012 R2, or 2016.

• Web server: IIS 8.0, 8.5, or 10.

• Application platform: Microsoft .NET Framework 4.6.1 or a later, ASP.NET MVC 5.2.3

• Can you use Oracle as the database?

• No. Only SQL Server 2012 or later is supported, including SQL Server 2016.

• Which browsers are supported for editors and admins (NOT visitors)?

• Internet Explorer 11, and the two most recent versions of Google Chrome and Mozilla Firefox.

Read the detailed system requirements:

http://world.episerver.com/documentation/Items/System-Requirements/system-requirements---episerver/

Module G – Optimizing, Securing, and Deploying – Deployment

394

When configuring IIS for production deployment, include the following:

• Web Server
• Common HTTP Features

• Static Content

• Default Document

• HTTP Errors

• HTTP Redirection

• Application Development

• ASP.NET

• .NET Extensibility

• ISAPI Extensions

• ISAPI Filters

• Security

• Windows Authentication

• URL Authorization

• Request Filtering

• Management Tools
• IIS Management Console

• IIS Management Scripts and Tools

• Management Service

• Health and Diagnostics

• HTTP Logging

• Request Monitoring

Installing Commonly Used IIS Features Using Powershell
http://world.episerver.com/kb/176156

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 394

Episerver

Licensing

There are two types of commercial licenses: server bound and instance bound.

• Server Bound licenses are used for on-premise environments and are tied to the MAC or IP address

of the physical or virtual server on which it runs.

• Instance Bound licenses contact the Episerver License server to run. Instance Bound licenses can be

used on-premise and are required for cloud environments because they provide the necessary

flexibility to operate on Azure or Amazon commercial clouds. https://license.episerver.com/

Demo licenses (duration 45 days) are available.

With the default configuration, the license(s) must be deployed to the root of your web application in a

single file named License.config, but you could change the path and filename in Web.config.

Module G – Optimizing, Securing, and Deploying – Deployment

395

<episerver.framework>

<licensing licenseFilePath="License.config"/>

Starting in January 2018 Episerver only sells Instance Bound licenses:
https://world.episerver.com/blogs/filip-gondek/dates/2017/11/new-license-model-2018/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 395

Episerver

Deployment scenarios

Your solution may include on-premises deployment, a cloud

environment, or a combination of both.

Episerver recommends at least two load balanced servers for

production deployments, but other configurations may work

for your scenario.

• Single site, single server (development, functional testing)

• Multi-site, single server (small sites)

• Multi-server on-premise (next slide)

• Cloud (later slides)

http://world.episerver.com/documentation/developer-

guides/CMS/Deployment/deployment-scenarios/

Module G – Optimizing, Securing, and Deploying – Deployment

396

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 396

Episerver

Deployment scenarios – Multi-server on-premise

397

Load-balancing manages multiple CMS websites that run on two

or more separate web servers. All the websites share the same

database and file store for media. The websites may or may not be

multisite.

When an event occurs, such as a cache removal notification

triggered by content publishing, that server updates the local

cache and configured servers in the setup, using Remote Events

based on WCF on-premise or Azure Service Bus in DXC Service.

Deploying to Windows Servers

http://world.episerver.com/documentation/developer-

guides/CMS/Deployment/deployment-scenarios/Deploying-to-Windows-Servers/

Module G – Optimizing, Securing, and Deploying – Deployment

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 397

Episerver

Deployment scenarios – Cloud – Microsoft Azure

398

You can deploy multiple CMS websites to a Microsoft Azure

environment with multiple instances. The CMS sites share the

same SQL database and BLOB storage that stores binary file data

in the cloud environment. The sites are load-balanced, and a

Service Bus manages events between the CMS websites.

http://world.episerver.com/documentation/developer-

guides/CMS/Deployment/deployment-scenarios/Deploying-to-Azure-webapps/

Deploying to a cloud environment requires your sites to be

designed for the cloud, for example, to implement the transient

fault handling design pattern. To learn more, attend our

Developing for DXC Service course.

See the Notes section for information about deploying to AWS.

Module G – Optimizing, Securing, and Deploying – Deployment

Deploying an Episerver site to Azure

To deploy an Episerver CMS site to Azure, you must:

1. Install the Episerver.Azure NuGet package in your Episerver website

project.

2. Create Azure resources (with DXC Service this is done for you).

3. Transform the Episerver website’s configuration:

a. Database connection string (from local database to SQL Database)

b. Blob provider (from local file system to Azure Storage)

c. Remote Events provider (from WCF to Azure Service Bus)

d. Indexed search provider (for example, from Search to Find)

4. Deploy code, data, and blobs to Azure resources.

Deployment scenarios – Cloud – Amazon Web Services

The website instances share the same Amazon RDS (Relational Database

Service) SQL instance, and the S3 storage in Amazon that stores binary file

data in the cloud environment. The sites are load-balanced, and the SNS

(Simple Notification Service)/SQS (Simple Queue Service) message queues

manage events between the CMS websites. Elastic scaling lets you increase

or reduce the number of CMS sites from the Elastic Beanstalk

administration interface in the AWS management console.

http://world.episerver.com/documentation/developer-

guides/CMS/Deployment/deployment-scenarios/Deploying-to-Amazon/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 398

Episerver

Understanding deployment tools

399

A third-party deployment tool that is popular for

Episerver deployments is Octopus Deploy. It works

with your build server, such as Team City, to enable

reliable, secure, automated releases of ASP.NET

applications and Windows Services into test,

staging and production environments, whether they

are in the cloud or on-premises.

https://octopus.com/

Module G – Optimizing, Securing, and Deploying – Deployment

XCOPY deployment

You can install Episerver CMS through XCOPY deployment by copying application files.

An XCOPY-style file transfer simplifies deployment and maintenance of Episerver sites because it does not

create registry entries, and it does not register shared components.

Another benefit of the XCOPY architecture in Episerver CMS is that it does not store machine- or site-specific

information in configuration files, so you can use a shared folder for multiple servers.

During development in a shared environment with source control, developers can keep configuration files

checked-in and still create a site that can be duplicated in a multi-site deployment.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 399

Episerver

Implementing zero downtime deployments

400

For two load balanced servers (A) and (B) using a shared database:

1. Put Episerver into readonly mode

2. Take server (A) out of load balancing pool

3. Replicate DB

4. Point server (B) to replicated DB

5. Apply changes (code and DB) to server (A)

6. Smoke test server (A)

7. Bring server (A) back online

8. Take server (B) out of load balancing pool

9. Apply changes to server (B)

10. Bring server (B) back into load balancing pool

Module G – Optimizing, Securing, and Deploying – Deployment

https://tedgustaf.com/blog/2017/zero-downtime-deployment-of-episerver/

https://world.episerver.com/forum/developer-forum/Developer-to-

developer/Thread-Container/2016/8/zero-downtime-deployments/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 400

Episerver

Securing Edit and Admin views

402

Security and privacy are built into both the Episerver platform, and the Azure cloud services upon

which the DXC Service is based.

Below are some additional precautions to consider to prevent unauthorized access:

• Ensure that the connection is secure, use a SSL server test tool to verify.

• Use federated authorization to a trusted authority to secure editor identities.

• Use a Web Application Firewall (WAF) to protect against threats such as DDOS, for example,

Cloudflare.

• Run penetration tests regularly, use a web security scanning tool, for example, Detectify.

Module G – Optimizing, Securing, and Deploying – Securing sites

Securing edit and admin user interfaces
https://world.episerver.com/documentation/developer-guides/CMS/security/Securing-edit-and-admin-user-interfaces/

All websites should now use HTTPS. If not, Chrome shows them as Not secure if the website has any input

boxes:

Set HTTP Only
Using the HttpOnly flag when generating a cookie helps mitigate the risk of client side script accessing the

protected cookie (if the browser supports it).

https://www.owasp.org/index.php/HttpOnly#Using_.NET_to_Set_HttpOnly

The 6-Step "Happy Path" to HTTPS
https://www.troyhunt.com/the-6-step-happy-path-to-https/

Free eBook: OWASP Top 10 for .NET developers
https://www.troyhunt.com/free-ebook-owasp-top-10-for-net/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 402

Episerver

Remove configuration that is not used

• If using the Multiplexing membership- and role providers:

• Remove the Windows provider from the list if not in use

<membership defaultProvider="MultiplexingMembershipProvider"
userIsOnlineTimeWindow="10"
hashAlgorithmType="HMACSHA512">

<providers>
<clear />
<add name="MultiplexingMembershipProvider"

type="EPiServer.Security.MultiplexingMembershipProvider, EPiServer.Framework"
provider1="SqlServerMembershipProvider"
provider2="WindowsMembershipProvider" />

Module G – Optimizing, Securing, and Deploying – Securing sites

403

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 403

Episerver

Decoupled setup

In deployment scenarios where you can have different server confugrations (not DXC Service), you can

choose to have the Edit and Admin UI on a separate server, only accessible from the internal network.

This can provide more control over performance and security on-premise although it isn’t necessary for

DXC Service.

Module G – Optimizing, Securing, and Deploying – Securing sites

SQL DB Server

F

i

r

e

w

a

l

l

Internal

Editing server

Web Server 2

Web Server 1

Web Server n

...

L
o

a
d

 B
a

la
n

c
e

r

Visitors

404

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 404

Episerver

Cookies and privacy

405

Episerver CMS can use the following cookies:

• ASP.NET_SessionId: Used on a website that implements ASP.NET session state. This cookie is deleted

when the session ends.

• EPi:NumberOfVisits: Used if you are using the Number of Visits visitor group criterion.

• .EPiServerLogin, EPiDPCKEY, .ASPXRoles: Used if a visitor logs in to a website. You should clearly

state on the login page that cookies are used if you log in.

• _utma, _utmb, _utmc, _utmz: Google Analytics cookies that used to collect information about how

visitors use the website.

Your websites should notify visitors about the cookies that they use, for example, BBC website:

Module G – Optimizing, Securing, and Deploying – Securing sites

About Article 5(3) of ePrivacy Directive

http://ec.europa.eu/ipg/basics/legal/cookies/index_en.htm

Example of cookie settings from BBC News website

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 405

Episerver

Understanding logging

• The Episerver log often reveals issues.

• When contacting Episerver developer support they probably want to take a look at a log file.

• Logging API shipped with EPiServer is an abstraction for writing log messages

• If you are currently using log4net for logging and want to start using the new API in an existing

project, there is a dedicated namespace called EPiServer.Logging.Compatibility that will help

with the migration.

• Set up located in EpiserverLog.config

Module G – Optimizing, Securing, and Deploying – Logging

407

Log level: Error, Debug, Info or All
When logging too much it reduces performance, makes the log files large and hard to read. Log only what you

need.

Store log files on separate drive
You might run out of space

Split up into log files each day
One good way to make the files more easy to read

log4net.Appender.RollingFileAppender

https://world.episerver.com/documentation/developer-guides/CMS/logging/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 407

Episerver

Configuring logging

<log4net>

<appender name="errorFileLogAppender" type="log4net.Appender.FileAppender" >

<file value="c:\\EpiserverLog\\1\\Monitor\\Errorlog-file.txt" />

<encoding value="utf-8" />

<lockingModel type="log4net.Appender.FileAppender+MinimalLock" />

<appendToFile value="true" />

<layout type="log4net.Layout.PatternLayout">

<conversionPattern value="%date [%thread] %level %logger: %message%n" />

</layout>

</appender>

<root>

<level value="Debug" />

<appender-ref ref="errorFileLogAppender" />

</root>

</log4net>

Module G – Optimizing, Securing, and Deploying – Logging

408

Use RollingFileAppender or similar

to prevent one large log file.

Set log level to Error or

Warn to avoid noise.

Log file should not be located

on same hard drive as the site.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 408

Episerver

Writing to the log

Get the logger service with LogManager:

using EPiServer.Logging;

private readonly ILogger logger = LogManager.GetLogger();

Write to the log:

logger.Critical("My message");

Module G – Optimizing, Securing, and Deploying – Logging

409

CMS 11 breaking change

It is no longer supported to get an

ILogger instance from IOC container.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 409

Episerver

Understanding Episerver product names

• Digital Experience Cloud (DXC): the umbrella marketing term for all Episerver products, even when

not hosted in the “cloud”.

• DXC License: our products charged per server or server instance.

• DXC Service: our products charged per consumption rates. All underlying services used by DXC

Service are included. Page views and SKUs in excess of the agreed amount will be billed at the

contracted overage rate. Prepaid excess consumption is discounted.

• This topic is about DXC Service, Episerver Digital Experience Cloud Service Description:
http://www.episerver.com/legal/episerver-dxc-service-description/

Module G – Optimizing, Securing, and Deploying – DXC Service

DXC License Server (tied to MAC address) Instance (“phones home” to check license)

Perpetual On-premise In cloud (AWS, Azure, and so on)

Term-Limited On-premise In cloud (AWS, Azure, and so on)

411

A lot of people use “DXC” to refer to DXC

Service although DXC-S would be clearer.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 411

Episerver

Understanding DXC-S architecture

DXC-S Digital Commerce package includes

everything in this diagram.

DXC-S Digital Marketing package is the same but

without the Commerce parts.

Specific technologies can be replaced with better

alternatives in the future. Your code should target

Episerver APIs, not a specific platform-as-a-

service like Microsoft Azure Service Bus.

http://world.episerver.com/digital-experience-cloud-

service/introduction/

Module G – Optimizing, Securing, and Deploying
– DXC Service

412

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 412

Episerver

DXC-S system requirements

Features not supported in DXC-S:

• Episerver CMS Mirroring

• Windows Workflow Foundation (WF)

• Episerver Search (uninstall the NuGet package to remove from your solution prior to deployment).

Add-ons not supported in DXC-S:

• Episerver CMO, Episerver Mail, Episerver Relate, Episerver Social CMS, Episerver Social Commerce,

Episerver Social Intranet.

See the detailed table of minimum required versions for Episerver products and modules:
http://world.episerver.com/digital-experience-cloud-service/requirements/

Module G – Optimizing, Securing, and Deploying – DXC Service

413

Episerver Social and A/B Test add-ons are available for DXC-S and replace some of these older add-ons.

Apply for a trial account for Episerver Social: https://social.episerver.net/

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 413

Episerver

DXC-S packages – Digital Marketing (CMS + Find)

1 Page views are calculated over the whole year so you don’t have to worry about seasonal peaks.

2 Included languages for Enterprise Search (aka Find). Find currently supports 33 languages. Find

actually supports hundreds of languages, but only 33 have full support for features like stemming.

3 Included Digital Experience Hub (DXH) Connectors for marketing and productivity services.

Module G – Optimizing, Securing, and Deploying – DXC Service

Package
Page Views

per year1

Emails

per month
SLA

Incident

response

Languages2

/Indexes

DXH3

Connectors

Group 2.4m 10k 99.7% 60 minutes,

business days

10 / 1 per

environment

0

Corporate 12m 100k

99.9% 2
Enterprise 60m 250k

30 minutes,

24/7/365

All2 / 1 per

environment

414

More page views, emails, languages, DXH

connectors, additional application and

deployment packages, and SLA upgrades can

be added at additional cost.

Understanding the Master Package and Additional Packages

With DXC-S, you pay for a Master Package and one or more Additional Packages and Add-Ons.

A Master Package includes the following:

A number of page views per year (so that you don’t overpay for seasonal peak traffic).

A number of SKUs per environment that are managed and indexed for search.

A number of transactional emails per month.

An advanced firewall for attack prevention.

A Content Delivery Network (CDN) for caching, improving scalability and responsiveness.

A multi-domain SSL certificate.

Additional Packages can be added for a fraction of a Master Package cost. Additional numbers of page views

and SKUs are merged into a single “bucket”. Prepay and overage charges are per 25k page views and 20k

SKUs. Prepay is half the cost of overage.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 414

Episerver

DXC-S packages – Digital Commerce (CMS + Find + Commerce)

The differences between the Digital Marketing and Digital Commerce packages are:

• the inclusion of our Commerce product, count limits on SKUs, and

• a package named Group Catalog that is for catalog sites, i.e. a read-only commerce site that does not

support transactional shopping carts and check out or customer service.

Module G – Optimizing, Securing, and Deploying – DXC Service

415

Package
Page Views

per year
SKUs

Emails

per month
SLA

Incident

response

Languages

/Indexes

DXH

Connectors

Group Catalog
2.4m 50k 10k 99.7% 60 minutes,

business days

10 / 1 per

environment

0
Group

Corporate 12m 200k 100k

99.9% 2
Enterprise 60m 1m 250k

30 minutes,

24/7/365

All / 1 per

environment

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 415

Episerver

Understanding DXC-S
environments

Module G – Optimizing, Securing, and Deploying – DXC Service

Three environments:

• Integration

• Preproduction

• Production
CDN applies to all

environments.

416

Partners and customer deploy the full solution to the Integration environment, as daily builds or continuous

releases. The Integration environment has fixed configuration and no automatic scaling.

Here developers can:

• validate integrations with external systems,

• perform functional testing, and

• add initial content in the case of a first-time deployment.

Episerver uses the Preproduction environment to:

• test Production deployment,

• verify performance and operational functionality.

Developers may also use the Preproduction environment for:

• User Acceptance Testing (UAT),

• performance and load testing,

• approved penetration testing.

The Preproduction environment scales automatically, and deployment is done by Episerver.

In the Production environment:

• content editors will author content, using the Episerver content publishing flow or Projects, and

• visitors can access public content.

The Production environment scales automatically, and deployment is done by Episerver.

You need to contact Episerver to register a ticket to initiate deployment to Preproduction and Production

environments, since this can only be done by Episerver.

All instances in the Production environment are identical, so you cannot follow Episerver’s recommended

practice for on premise deployment, i.e., for extra security, create a server for editors and admins that is

separate from the load balanced servers used by visitors.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 416

Episerver

Understanding the role of Managed Services

• Set up of environments

• First-time deployment of code, content

and configuration to Preproduction and

Production.

• Initial troubleshooting and roll-back if

issues arise.

• Continuous deployment of code to

Preproduction and Production after go-

live.

• Deployment of production content back

to Preproduction and Integration.

Module G – Optimizing, Securing, and Deploying – DXC Service

417

You can purchase additional Integration environments

but they won’t be part of the deployment chain.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 417

Episerver

PaaS portal for customers and partners

PaaS portal sets up the Azure services, Episerver software and services including Find, CDN,

monitoring, and more. It is a provisioning and deployment tool intended to simplify, standardize, and

streamline our managed service and operational processes.

The PaaS portal is available for use by customers and partners to manage your own DXC Service

environments. It supports these features:

• One-click and scheduled deployments, including validations during deployments

• Deployment progress and details

• Configuration transforms

• Set maintenance page

• Error handling and logging, including streaming of logs from all environments

Module G – Optimizing, Securing, and Deploying – DXC Service

418

• Today, it enables deployments from Integration to Preproduction.

• In future, it will enable deployments from Preproduction to Production.

https://world.episerver.com/dxc-service-self-deployment-guide/

Performing deployments

Viewing application logs

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 418

Episerver

Backup and retention

DXC-S performs backups of the application and database using Microsoft Azure’s backup service:
https://azure.microsoft.com/en-us/documentation/articles/web-sites-backup/

• The Web App’s file content and configuration is backed up to the Episerver-managed Azure storage

account every twenty-four (24) hours.

• The SQL Database creates a full backup of every active database hourly and transaction log back-up

every five (5) minutes. The backups are replicated to a geo-redundant data center to ensure

availability of the backups in the event of disaster.

Episerver saves backup copies for thirty-five (35) days.

Assets (media and files) are not backed up as a part of this process because Azure Blob Storage is

disaster resilient. Assets are replicated both within the data center and to a geo-redundant location.

However, this does not account for user error if an editor mistakenly deletes an asset.

Module G – Optimizing, Securing, and Deploying – DXC Service

419

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 419

Episerver

Web App

Azure SQL

database
Service Bus Storage blob

Web App

Azure SQL

database
Service Bus Storage blob

SQL Azure Database Active Geo-Replication

Azure Geo-Replicated Storage

Primary region Failover region
Code distribution through Episerver development process

Read-onlyWrite Mode

Failover replication process

Module G – Optimizing, Securing, and Deploying – DXC Service

Service Bus does not support

active geo-replication. Be aware of

this if you use Episerver Events API.

While failed-over, logging is not

available because blobs are

readonly in the failover region.

Failover is an optional, additional cost, component.
https://world.episerver.com/digital-experience-cloud-service/failover/ 420

Failover considerations

The main consideration is to ensure your site supports read-only mode:

CMS and Commerce versions on your site must support read-only mode (CMS 9.7.0 and Commerce 9.9.0 or

higher). Add-ons on the site must also support read-only mode.

Ensure that you configure warnings in your solution to handle read-only mode, for example by

using application state. For database transactions features, such as saving a posted form, or storage

transaction features like image resizing, these features must be aware that the application is in read-only

mode, to not throw write exceptions.

Optionally, you can configure if you want to display an information message to end-users on the failover site

when in read-only mode during a failure. Set the episerver:ReadOnlyInfoUrl appSetting to override the default

of ~/Util/ReadOnly.aspx:

Copyright © Episerver AB. All rights reserved.

Page 420

<appSettings>
<add key="episerver:ReadOnlyInfoUrl" value="~/OurCustomReadOnlyPage.html" />

https://world.episerver.com/documentation/developer-guides/CMS/Deployment/database-mode/

Episerver CMS – Development Fundamentals

Episerver

Read-only

Failover regionPrimary region

Web App

Azure SQL

database
Service Bus Storage blob

Primary region

Web App

Azure SQL

database
Service Bus Storage blob

Write Mode

Content Delivery

Network (CDN)

Traffic Manager

Internet

End user traffic

Continuous monitoring of endpoint health

Endpoint Problem

Failover replication process

Module G – Optimizing, Securing, and Deploying – DXC Service

421

421

Episerver CMS – Development Fundamentals

Episerver

DXC-S platform security

• Web Apps do not use the traditional version of Microsoft Windows, but rather a purpose built version

with a smaller attack surface and reduced vulnerability, with continuously updated patches.

• Each customer solution uses isolated resources, with independent databases and Web Apps.

• Microsoft's Azure antimalware provides real-time protection and content scanning.

• Microsoft and their Red Team regularly pen test the underlying infrastructure.

• The Episerver platform is subject to regular pen tests conducted by customers and partners.

• However, any implementation on top of the Episerver platform could unexpectedly introduce a

security hole, therefore you need to ensure that your solution is tested.

• DXC Service supports encryption for data-at-rest using Azure platform features.

Module G – Optimizing, Securing, and Deploying – DXC Service

422

WAF protects against Distributed Denial of Service (DDoS) attacks

DDoS attacks are common and complex, and traditional on premise solutions cannot handle these.

DXC-S WAF offers advanced protection at the network edge through its CDN provider including UDP and ICMP

protocols, DNS amplification, Layer 7 and 3/4, SYN/ACK, and SMURF (refer to information on the net for this

terminology).

DXC-S WAF supports blocking traffic by country and we will enable this for a customer on request.

Microsoft Azure also protects against attacks generated from outside and inside the platform.

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 422

EpiserverEpiserver

Exercises G1 to G3 – Optimizing, Securing,
and Deploying

Module G – Optimizing, Securing, and Deploying

Estimated time: 45 minutes

Prerequisites: Exercise A1.

Use AlloyDemo project for these exercises.

1. Controlling the caching of responses.

2. Implementing logging.

3. Securing an Episerver site.

423

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 423

Episerver

Further study

427

The following are recommendations of what to self-study after completing Modules D to G.

• Review the Notes sections underneath all the slides in Module D to G.

• Review the Block types and templates topic in the CMS Developer Guide:
https://world.episerver.com/documentation/developer-guides/CMS/Content/Block-types-and-templates/

• Review the Search topic in the CMS Developer Guide:
https://world.episerver.com/documentation/developer-guides/CMS/search/

• Review the Initialization topic in the CMS Developer Guide:
https://world.episerver.com/documentation/developer-guides/CMS/initialization/

• Review the Caching topic in the CMS Developer Guide:
https://world.episerver.com/documentation/developer-guides/CMS/caching/

• Review the Deployment topic in the CMS Developer Guide:
https://world.episerver.com/documentation/developer-guides/CMS/Deployment/

Module D – Working with Blocks
Module E – Navigating Content
Module F – Working with Episerver Framework
Module G – Optimizing, Securing, and Deploying

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 427

Episerver

Course Summary

Episerver CMS – Development Fundamentals

428

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 428

Episerver 430

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 430

Episerver

Thank you!

431

You will receive a email after the
course asking for feedback. You

will only receive your Certificate of
Completion if you fill it in!

Episerver CMS – Development Fundamentals

Copyright © Episerver AB. All rights reserved.

Page 431

