
Episerver

Customizing and Extending

Episerver Content Cloud
Spring 2020

Formerly Episerver CMS – Advanced Development

Episerver

Course title: Customizing and Extending Episerver Content Cloud Course code: 170-3030

Course version: 20.03, March 10, 2020 Product version: Update 306, March 9, 2020

Episerver CMS Visual Studio Extension version: 11.6.0.421 (includes EPiServer.CMS 11.12.0)

Episerver packages: EPiServer.CMS 11.14.2, EPiServer.CMS.UI 11.23.7, EPiServer.Forms 4.27.1,

EPiServer.Search 9.0.3, EPiServer.Find 13.2.5, EPiServer.Marketing.Testing 2.5.12

https://world.episerver.com/releases/

Copyright © 2020 Episerver. All rights reserved.
Without limiting the rights under copyright, no part of this document may be reproduced, stored in or

introduced into a retrieval system or transmitted in any form or by any means (electronic, mechanical,

photocopying, recording, or otherwise), or for any purpose, without expressed written permission of Episerver

AB. We assume no liability or responsibility for any errors or omissions in the content of this document.

Episerver is a registered trademark of Episerver AB.

Episerver

Important Disclaimer

3

This course material (“Course Material”) has been prepared by Episerver AB, Episerver Inc. and various other

subsidiaries (“Episerver”) based on information available from them and third party sources. By retaining this

Course Material, you (“the Recipient” or “You”) acknowledge and represent to Episerver that You have read,

understood and accepted the terms of this Important Notice. If You do not accept these terms, You should

immediately destroy or delete this Course Material. This Course Material does not purport to contain all the

information that You or a third-party may require in any connection with any business with Episerver. You shall not

use or rely on contents of this Course Material, or any information provided in connection with it, as product or

service advice. No representation or warranty is made by Episerver or any of its advisers, agents or employees as to

the accuracy, completeness or reasonableness of the information in this Course Material or provided in connection

with it. No information contained in this Course Material or any other written or oral communication in connection

with it is, or shall be relied upon as, a promise or representation and no representation or warranty is made as to

the accuracy or attainability of any estimates, forecasts or projections set out in this Course Material. No liability will

attach to Episerver, with respect to any such information, estimates, forecasts or projections. All third-party

trademarks used within the Course Material are acknowledged, and used for only reference purposes.

Course Material Disclaimer

Episerver does not accept responsibility or liability for any loss or damage suffered or incurred by

You or any other person or entity however caused (including, without limitation, negligence)

relating in any way to this Course Material including, without limitation, the information contained

in or provided in connection with it, any errors or omissions from it however caused (including

without limitation, where caused by third parties), lack of accuracy, completeness, currency or

reliability or You, or any other person or entity, placing any reliance on this Course Material, its

accuracy, completeness, currency or reliability. Any liability of Episerver (including advisers,

agents and employees) to You or to any other person or entity arising out of this Course Material

including any corresponding provision of any territory legislation, or any applicable law is, to the

maximum extent permitted by law, expressly disclaimed and excluded.

You agree not to reproduce, print, re-transmit, copy, distribute, publish or sell any of the contents

of this Course Material without the prior written consent of Episerver. Reproduction of part or all

of the contents of this Course Material in any form is expressly prohibited and may not be

recopied and/or shared with a third party. The permission to recopy by an individual does not

allow for incorporation of material or any part of it in any work or publication, whether in hard

copy, electronic, or any other form.

Copyright © 2020 Episerver. All rights reserved.

Copyright © 2020 Episerver. All rights reserved.

Page 3

Episerver

Introduction
In this module, you will learn about the Customizing and Extending

Episerver Content Cloud course.

The prerequisite for this course is completion of the Episerver Content
Cloud – Development Fundamentals course or equivalent experience.

Prerequisites are:

• Experience with Microsoft Visual Studio 2015 or later, ASP.NET MVC, and web front end technologies.

• Experience with Episerver CMS equivalent to our Episerver Content Cloud – Development Fundamentals

training course.

Copyright © 2020 Episerver. All rights reserved.

Page 8

Customizing and Extending Episerver Content Cloud

Episerver

Course objectives

By the end of this course, you will know what is possible to achieve and have seen working examples,

but to become an expert yourself takes time. You will:

• Understand how to use APIs for user notifications, content approvals, projects, activities (change log),

categories, language branches, access rights, A/B testing.

• Understand how to integrate data using DDS, Forms, scheduled jobs and event listeners, partial

routers, content providers, and REST APIs.

• Understand how to customize the experience for editors and visitors.

• Understand how to extend the built-in features with plugins, gadgets, and add-ons.

• Understand how to implement indexed search using Episerver Search & Navigation.

• Understand how to implement social features like comments and ratings using Episerver Community

API (formerly Episerver Social).

About this course

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 10

Episerver

Course agenda

• Introduction

• Module A: Reviewing Episerver Content Cloud Fundamentals

• Module B: Working with Content using APIs

• Module C: Integrating Data

• Module D: Customizing the Experience for Editors

• Module E: Customizing the Experience for Visitors

• Module F: Extending with Plug-ins and Add-ons

• Module G: Implementing Episerver Search & Navigation

• Module H: Integrating Episerver Community API

• Course Summary

About this course

Course Book PDF

has “missing” pages

because we do not

output the topic title

slides to save you

print costs.

Module A: Reviewing Episerver Content Cloud Fundamentals
In this module, you will review topics you should already know.

Module B: Working with Content using APIs
In this module, you will learn about some advanced APIs including working with Content Approvals, Projects,

and Notifications.

Module C: Integrating Data
In this module, you will learn about various technologies and techniques for integrating non-content data,

including gathering visitor data with Forms and integrating external data systems with partial routers and

Service API.

Module D: Customizing the Experience for Editors
In this module, you will learn how to customize the editors experience when setting content properties.

Module E: Customizing the Experience for Visitors
In this module, you will learn how to take control of the visitors experience with custom rendering,

personalization with visitor groups, and advanced customization of Episerver Search,.

Module F: Extending with Plug-ins and Add-ons
In this module, you will learn how to extend Episerver with custom plug-ins, gadgets, and add-ons.

Module G: Implementing Episerver Search & Navigation (formerly Find)
In this module, you will learn how to integrate Episerver Content Cloud with Episerver Search & Navigation

(formerly Find) to implement advanced search capabilities.

Module H: Integrating Episerver Community API
In this module, you will learn how to integrate Episerver CMS with Episerver Community API to implement

advanced features like comments, ratings, and managing groups.

Copyright © 2020 Episerver. All rights reserved.

Page 11

Customizing and Extending Episerver Content Cloud

Episerver

About the course exercises

About this course

The Customizing and Extending Episerver Content Cloud course is designed with stand-alone modules

so that they can be completed in any order. Every module has hands-on exercises that can be

completed by starting with a freshly created Alloy (MVC) website project.

• All exercises are dependent on the completion of Exercise A1, which sets up an Alloy (MVC) website

project with updated NuGet packages and database schema, and then sets up the Northwind

sample database that some later exercises require.

We picked the Alloy (MVC) website as a starting point because

• It is built-in with the Episerver CMS Visual Studio Extension, it is quick to set up with some sample

content, it is small enough to understand, and familiar to many Episerver developers, and it shows

some good practices.

• Learn more about the Alloy (MVC) template:
http://www.awareweb.com/awareblog/4-17-17-episerver_10_alloy_mvc

Recommendation

If you copy and paste solutions, then do so from

the exercise files ZIP rather than from the exercise

book PDF to avoid broken lines due to formatting.

Copyright © 2020 Episerver. All rights reserved.

Page 14

Customizing and Extending Episerver Content Cloud

Episerver

Module A

Reviewing Episerver Content
Cloud Fundamentals

Customizing and Extending Episerver Content Cloud

Review fundamental skills and knowledge about the
fundamentals of developing for Episerver Content Cloud.

Customizing and Extending Episerver Content Cloud

Page 15

Copyright © 2020 Episerver. All rights reserved.

Episerver

Agenda

16

In the classroom there is limited time available so your instructor will lead a discussion to review what

you should already know about Episerver Content Cloud, including:

• Installing and updating an Episerver Content Cloud solution

• Defining content types like pages, blocks, and media

• Rendering content templates

• Implementing search & navigation

• Implementing Episerver Framework components like scheduled jobs and initialization modules

• Deployment and improving performance, scalability, and security

• Exercise A1: Setting up the AlloyAdvanced website

If you have a Developer Subscription then it includes a separate course for reviewing Episerver Content

Cloud fundamentals.

Reviewing Episerver Content Cloud Fundamentals

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 16

EpiserverEpiserver

Exercise A1

Setting up the AlloyAdvanced website

Estimated time: 20 minutes

Prerequisites: none

In this exercise, you will:

• Set up an Alloy (MVC) website ready to extend

during the rest of the exercises.

• Update the Episerver NuGet packages and

database schema.

• Create the Northwind database for use in later

exercises as an external data source.

Customizing and Extending Episerver Content Cloud

Page 17

Copyright © 2020 Episerver. All rights reserved.

Episerver

Module B

Working with Content
using APIs

Customizing and Extending Episerver Content Cloud

Content generation often needs to be automated to, for example,
minimize the work for the editor or to allow for user-submitted
content. To handle this you need know how to work with the

content programmatically.

Customizing and Extending Episerver Content Cloud

Page 18

Copyright © 2020 Episerver. All rights reserved.

Episerver

Module agenda

• Controlling access rights

• Working with language branches

• Managing categories, projects, and activities

• Sending notifications

• Managing content approvals

• Creating KPIs for A/B testing

Module B – Working with Content using APIs

• Exercises B1 to B6

• Exercise B1 – Implementing a Share This block

• Exercise B2 – Programming content approvals

• Exercise B3 – Implementing user notifications

• Exercise B4 – Implementing a commenting solution

• Exercise B5 – Importing images with code

• Exercise B6 – Implementing a custom KPI

Customizing and Extending Episerver Content Cloud

Page 19

Copyright © 2020 Episerver. All rights reserved.

Episerver

Checking the user’s access rights

What ways can you get a content item’s access control list?

• If you have a content reference, then use the ContentAccessControlList constructor*:

• If you have a content item, then get its readonly cached ACL property:

How can you check what access rights a user has? How do you check a specific access right?

Controlling access rights

var acl = new ContentAccessControlList(contentReference);

AccessControlList acl = currentPage.ACL;

var accessLevel = acl.QueryAccess(); // the current user
var accessLevel = acl.QueryAccess(principal); // the user specified by principal

bool canPublish = acl.QueryDistinctAccess(AccessLevel.Publish); // current user
bool canPublish = acl.QueryDistinctAccess(principal, AccessLevel.Publish);

using EPiServer.Security;

*The AccessControlList

constructor does not allow a

content reference to be passed.

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 21

Episerver

Modifying access rights

How should you modify and save changes to access rights for a content item?

1. Get the access control list from the content item’s ACL property.

2. Call CreateWritableClone() because it is cached as readonly.

3. Add, remove, or clear access control entries in the ACL:

4. IContentSecurityRepository.Save(currentPage.ContentLink,
acl, SecuritySaveType.Replace)

How can you audit changes to access rights?

• IContentSecurityRepository has two events: ContentSecuritySaving and ContentSecuritySaved

Controlling access rights

using EPiServer.Security;

var ace = new AccessControlEntry("Ahmed",
AccessLevel.FullAccess, SecurityEntityType.User);

var acl = currentPage.ACL.CreateWritableClone() as AccessControlList;

Save() method of AccessControlList is deprecated

acl.Add(ace);

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 22

Episerver

Managing website languages

How can you use code to discover which languages are active in an

Episerver website project, for example, English and Swedish?

How can you enable a language like French?

How can you find out which roles can change content in a specific language?

Working with language branches

CultureInfo fr = CultureInfo.GetCultureInfo("fr");
bool result = languageBranchRepository.Enable(fr); // returns false if already enabled

private readonly ILanguageBranchRepository languageBranchRepository;

LanguageBranch lang = languageBranchRepository.Load(fr);
foreach (AccessControlEntry ace in lang.ACL.Entries)
{

if (ace.EntityType == SecurityEntityType.Role)

IList<LanguageBranch> langs = languageBranchRepository.ListEnabled();

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 24

Episerver

Managing language branches for content

How can you check if a language branch like French already exists for a content item?

How can you create a new language branch for an existing content item?

Working with language branches

CultureInfo fr = CultureInfo.GetCultureInfo("fr");

IEnumerable<StartPage> startPages = contentRepository
.GetLanguageBranches<StartPage>(page.ContentLink);

bool frenchExists = startPages.Any(p => p.Language == fr);

private readonly IContentRepository contentRepository;

StartPage frenchPage = contentRepository.CreateLanguageBranch<StartPage>(
contentLink: page.ContentLink, language: fr);

frenchPage.Name = "Page de Démarrage";

contentRepository.Save(frenchPage, SaveAction.CheckIn, AccessLevel.NoAccess);

bool frenchExists = currentPage.ExistingLanguages.Any(culture => culture == fr);

Each PageData has CultureInfo

properties named Language…

…and ExistingLanguages

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 25

Alternatives to default Episerver categories

An alternative to Episerver's default category functionality, where

categories are instead stored as localizable IContent:
https://github.com/Geta/EpiCategories

Features

• Localization (no more language XML files)

• More user friendly edit UI

• Access rights support (some editors should perhaps have limited

category access)

• Shared and site specific categories in multisite solutions

• Partial routing of category URL segments

Install-Package Geta.EpiCategories

Geta Tags for EPiServer CMS

https://github.com/Geta/Tags

Relations for Episerver, connectable content for better navigation and great relevance

https://github.com/BVNetwork/Relations

Episerver

Programmatically working with categories

Use CategoryRepository to work with

categories programmatically.

• Get(): by ID or name

• GetRoot()

• Save()

• Delete()

Use ICategoryEvents to log when

categories are changed.

Use Category and its Categories

property (has its child categories as a

CategoryCollection) to navigate the

hierarchy.

Managing categories, projects, and activities

Episerver CMS 8 or later

Customizing and Extending Episerver Content Cloud

Page 27

Copyright © 2020 Episerver. All rights reserved.

Episerver

Programmatically working with projects

Get, create, update, and delete a project and its content items using:

• Types: ProjectRepository, Project, ProjectItem, ProjectResolver

• Methods: Save, SaveItems, Get, GetItem, List, ListItems, FindItems, GetCurrentProjects, Delete,
DeleteItems

• Events: ProjectSaved, ProjectDeleted, ProjectItemsSaved, ProjectItemsDeleted

Publish projects using:

• Types: ProjectPublisher

• Methods: PublishAsync, ReactivateAsync

Managing categories, projects, and activities

http://world.episerver.com/documentation/developer-guides/CMS/projects/creating-a-project-programmatically/

Episerver CMS 9.3 or later

Customizing and Extending Episerver Content Cloud

Page 28

Copyright © 2020 Episerver. All rights reserved.

Episerver

Programmatically working with activities

Managing categories, projects, and activities

https://world.episerver.com/documentation/developer-guides/CMS/logging/activity-logging/

Change Log is a user interface for administrators to list recent activities in Episerver.

All changes to content items are logged as an activity.

• Retention: All activities are stored at least one month unless another platform

feature has a dependency to certain activities, in which cases they may remain for

an additional period. Activities without any remaining dependencies are archived or

deleted by a scheduled job. Archived activities are persisted for 12 months by

default.

• Activities API: The classes and interfaces for the Activities API can be found in the

EPiServer.DataAbstraction.Activities namespace. The Activities API supersedes

the previous ChangeLog API that is now deprecated. Developers can execute

queries to retrieve information from the Activities log.

Episerver CMS 10.9 or later

Customizing and Extending Episerver Content Cloud

Page 29

Copyright © 2020 Episerver. All rights reserved.

Episerver

Programmatically working with user notifications

Notification API is intended for sending user-to-user notification messages.

You can create your own formatters and providers. The sender has no control of

how the recipient receives the message—it could be via email or notifications

bell in the user interface or a custom provider like a mobile app.

Every message is sent on a channel (identified by a channel name), which is a

namespace that groups messages of a certain kind together.

Notifications are stored in the database and old notifications are deleted by the

Notification Message Truncate scheduled job, which is set to run every night by

default and removes all notifications older than 3 months.

Messages are sent using INotifier.PostNotificationAsync()

Sending notifications

http://world.episerver.com/documentation/developer-guides/CMS/using-notifications/

Episerver CMS 10.10 or later

Customizing and Extending Episerver Content Cloud

Page 31

Copyright © 2020 Episerver. All rights reserved.

Episerver

Instant and scheduled user notifications and subscriptions

Using Notification API, a message can either be configured to be:

• sent immediately, or

• placed in a message queue that is periodically handled by a scheduled job

Subscription API enables storing a link between a key and an user. You can then later use the API to

get a list of users subscribing to a key. A key can be anything you want formatted as an Uri, for

example, a page in Episerver CMS or catalog content in Episerver Commerce.

ISubscriptionService has many methods to manage subscriptions.

Sending notifications

http://world.episerver.com/documentation/developer-guides/CMS/using-notifications/usage-examples/

http://world.episerver.com/documentation/developer-guides/CMS/using-notifications/subscription_keys/

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 32

IUserNotification
Formatter

ChannelName
Content

Recipients
Sender
Subject
TypeName

Dispatcher

scheduled job

INotification
Provider

INotification
Formatter

Notification

Message

Truncate

scheduled job

Content approvals is a way to make sure that content is reviewed and approved before it is published.

The reviewers are defined by an administrator in an approval sequence.

One or more appointed reviewers must then approve the content item before it can be published. To review

content the user must have Read access right and at least one other access right, like Create or Change or

Delete.

When an editor has finished working on a content item, the item is set to Ready for Review.

Sequences and reviewers
An approval sequence can be set up with any number of approval steps and any number of reviewers in each

step. The sequence is set up by an administrator, who also defines, for each step individually, who can

approve a content item.

It is possible to have only one person as reviewer in a step, but it is recommended to have at least two (per

language) in case one of them is unavailable.

As soon as one of the reviewers in a step approves the content, that step is considered completed and the

item moves to the next step in the approval sequence.

When a content item enters an approval step, the reviewers in that step are notified by email and in the user

interface that they have an item to approve.

When the content has been approved in all steps, it is automatically set as Ready to Publish, and anyone with

publishing rights can publish it.

Group/role as a reviewer was added in CMS 10.10 and later
We recommend that you use small groups because when you assign a group with lots of members, there is a

tendency for everyone in that group to assume that someone else will approve the content. It will also get

annoying for all those group members if you have email notifications enabled, so use common sense.

http://world.episerver.com/blogs/john-philip-johansson/dates/2017/5/introducing-grouprole-support-in-

content-approvals/

Episerver

Programmatically working with content approvals

Perform CRUD operations on an approval sequence definition by using:

• Services: IApprovalDefinitionRepository

• Methods: GetAsync, SaveAsync, DeleteAsync

• Classes: ContentApprovalDefinition, ApprovalDefinitionStep, ApprovalDefinitionReviewer

Work with approval workflows using:

• Services: IApprovalRepository, IApprovalEngine, IApprovalEngineEvents

• Classes: ContentApproval

• Methods: ApproveAsync, RejectAsync, AbortAsync, GetAsync, GetItemsAsync

• Events: Started, Approved, Rejected, Aborted, StepStarted, StepApproved, StepRejected

Managing content approvals

http://world.episerver.com/documentation/developer-guides/CMS/Content/content-approvals/working-with-content-approvals/

Episerver CMS 10.1 or later

Episerver CMS 11.10 or later: Four-Eyes Principle

Configurable if person who requested approval can approve the changes.

Customizing and Extending Episerver Content Cloud

Page 34

Copyright © 2020 Episerver. All rights reserved.

Assets, such as blocks and media (and also forms and catalogues if you have Episerver Forms and Episerver

Commerce installed), cannot have individual approval sequences. Instead, the content approval sequence is

set on each assets folder, and all assets in a folder have the same approval sequence set.

The Blocks and Media folders in the assets pane are actually the same folders in the software and share the

same content approval sequences; the Blocks and Media tabs in the assets pane are merely a way of filtering

out blocks if you are in the Media tab and vice versa.

Forms and Commerce catalogues have their own structures.

Editors can drag and drop an unapproved image into a rich-text property but visitors will not see it because the

 returns a 404.

Episerver

Content approval definitions

ContentApprovalDefinition

properties:

• ContentLink: reference

to the page or folder

• IsEnabled

• Steps

ApprovalDefinitionStep

properties:

• Name

• Reviewers

Managing content approvals

using EPiServer.Approvals;
using EPiServer.Approvals.ContentApprovals;

35

Name

ReviewerType

Customizing and Extending Episerver Content Cloud

Page 35

Copyright © 2020 Episerver. All rights reserved.

Episerver

Starting the approval process

To start the approval workflow you do not use the Content Approval API dependency services.

A content approval is not started by saving an approval but by saving a content item with

SaveAction.RequestApproval. This automatically creates and saves a ContentApproval for this

content item, if a definition can be resolved.

Managing content approvals

var start = repo.Get<StartPage>(ContentReference.StartPage)
.CreateWritableClone() as StartPage;

start.Name += "X";
repo.Save(content: start,

action: SaveAction.RequestApproval,
access: AccessLevel.NoAccess);

private readonly IContentRepository repo;

using EPiServer;
using EPiServer.DataAccess;
using EPiServer.Security;

Customizing and Extending Episerver Content Cloud

Page 36

Copyright © 2020 Episerver. All rights reserved.

Reviewers, roles, languages, and required comments on approve or decline

It is only the role name that is part of the definition, not the users in the role. The validation to see if a user is

part of a role is made at the moment it is needed. This means that a user can be added to a role or removed

from one and that will affect an already started approval.

To avoid content getting stuck in an approval step if a reviewer is unable to approve, it is recommended that

you have at least two reviewers (per language) in a step.

An administrator can always approve and publish a page.

Administrators and the editor who started the approval sequence can cancel the approval sequence at any

step.

If you have content in more than one language, each language must have at least one reviewer.

The administrator decides whether a reviewer can approve content for all languages or for specific languages.

Therefore, it is possible to have different reviewers for different languages.

Administrators can require comments on Approve and/or Decline.

http://world.episerver.com/blogs/Khurram-Hanif/Dates/2017/3/content-approvals---require-comments-for-

decline-and-approve/

Episerver

Tracking the approval process

Once a request for approval has been made, each piece of

content, including one for each language branch, has an

instance of ContentApproval associated with it.

Important properties:

1. ActiveStepIndex (0, 1, 2, and so on)

2. Status

3. StartedBy and Started (DateTime)

4. CompletedBy, Completed (DateTime), and
CompletedComment

Managing content approvals

1

2

3

4

Getting the Content Reference from EPiServer Content Approval Events
https://johnnymullaney.com/2019/03/12/getting-the-content-reference-from-episerver-content-approval-events/

Customizing and Extending Episerver Content Cloud

Page 37

Copyright © 2020 Episerver. All rights reserved.

Episerver

Making a decision to approve or reject a step

Use the approval engine to decide to approve/accept or decline/reject a step, or the whole approval.

CMS users must have AccessLevel.Read and at least one other access level like AccessLevel.Create

or AccessLevel.Edit or AccessLevel.Delete to be able to approve or decline a step.

Managing content approvals

var approval = await repoApprovals.GetAsync(ContentReference.StartPage);

await engine.ApproveStepAsync(
id: approval.ID,
username: "Alice",
stepIndex: 1,
comment: "I approve: the page looks great!");

private readonly IApprovalRepository repoApprovals;
private readonly IApprovalEngine engine;

using EPiServer.Approvals;
using EPiServer.Approvals.ContentApprovals;

Customizing and Extending Episerver Content Cloud

Page 38

Copyright © 2020 Episerver. All rights reserved.

Example change approval

Tina has been asked to change the order of the products in the Alloy top navigation menu. Since the

navigation menu order is controlled by the order of the pages in the page tree, she moves the Alloy Track page

in the page tree. The Alloy Track page has a content approval sequence defined so the page is not

immediately moved, and Tina sees a message that the move of the page is awaiting approval.

The approval sequence is set up with one step, and both reviewers, Alicia and Carlos, are notified in the user

interface when they log in that Tina has moved Alloy Track and that they need to approve that move. Carlos

now approves the move and the page is moved immediately and the top navigation menu is updated on the

website. If Carlos had instead declined, the page would have remained in its original position.

Episerver

Change approvals

Ensure changes that affect the website are reviewed and approved before they are applied, including:

• changes to access rights,

• language settings for fallback and replacement languages,

• content expiration dates, and moving pages and blocks in the structure.

When all steps in the approval sequence have been approved, the change is immediately applied.

Change approvals use the same approval sequences as content approvals. This means that if you have

set a content approval sequence for a content item, the same sequence and reviewers are used when

changes are performed on that content item.

Change approvals affects all versions of the page or block, so while one change is in review, you

cannot perform any of the changes that must be approved before being applied.

Managing content approvals

Install-Package EPiServer.ChangeApproval -ProjectName AlloyAdvanced

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 39

Introducing the A/B Test List Gadget

Zone decided to create a CMS dashboard gadget which gives editors a list of running A/B tests, owners,

results, views, participation percentage and a direct link to the detailed test overview page. This list can also

be filtered based on the test site directly from the component interface.

https://world.episerver.com/blogs/jacob-pretorius/dates/2019/5/introducing-the-ab-test-list-gadget/

Episerver

Programmatically working with KPIs

A key performance indicator (KPI) in Episerver records when a visitor on a website performs a desired

action, such as navigating to a specific page, or adding a SKU to a shopping cart.

• KPIs can be used as conversion goals in A/B testing.

How do you enable A/B testing?

• Install the following package, update dependent packages, and update the database:

Creating KPIs for A/B testing

Install-Package EPiServer.Marketing.Testing -ProjectName AlloyAdvanced

Update-Package EPiServer.CMS -ToHighestMinor -ProjectName AlloyAdvanced

Update-EPiDatabase

Episerver CMS 10.0 or later

http://world.episerver.com/documentation/developer-guides/CMS/key-performance-indicators-kpis/

Customizing and Extending Episerver Content Cloud

Page 41

Copyright © 2020 Episerver. All rights reserved.

IClientKpi is an interface for defining a custom KPI that should be run on the client browser to

convert an A/B test. It consists of only one method named ClientEvaluationScript() for

retrieving the client JavaScript that needs to be presented in the browser to indicate when a

conversion takes place.

Episerver

Implementing a KPI

To create a custom KPI,

implement the IKpi

interface (server-side

evaluation) and optionally

the IClientKpi interface

(client-side evaluation),

or inherit from Kpi.

The three built-in KPIs for

A/B testing with

Episerver CMS do, as

shown in this class

diagram.

Creating KPIs for A/B testing

Use _servicelocator in your derived class’s

constructor to get dependency services.

Three KPIs are

built-in when

A/B testing with

Episerver CMS.

Customizing and Extending Episerver Content Cloud

Page 42

Copyright © 2020 Episerver. All rights reserved.

Episerver

Setting up inputs for a conversion goal

When an editor creates an A/B test, and they choose

your custom conversion goal, you control the user

experience via some properties of IKpi:

• FriendlyName and Description: strings to name and

describe the goal in the user interface.

• UiMarkup: returns a string of HTML for any custom

inputs your goal needs, like a form selection.

To check a correct input has been made, implement the

Validate() method. You will be passed a dictionary of

string values for all the inputs. Throw a

KpiValidationException if there is a problem.

Creating KPIs for A/B testing

UiMarkup

FriendlyName

Description

https://www.david-tec.com/2017/09/creating-a-submitted-form-kpi-for-episerver-ab-testing/

Customizing and Extending Episerver Content Cloud

Page 43

Copyright © 2020 Episerver. All rights reserved.

Episerver

Running and evaluating a test with a custom conversion goal

Once a test is running, the implementation of

UiReadOnlyMarkup is used to show the inputs of the

custom conversion goal.

Implement the EvaluateProxyEvent event to add and

remove a handler for the CMS content event that will

trigger the conversion goal.

Implement the Evaluate() method to return an

IKpiResult with its HasConverted property set to true if a

conversion has been made.

Creating KPIs for A/B testing

UiReadOnlyMarkup

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 44

EpiserverEpiserver

Exercises B1 to B6

Working with Content using APIs

1. Implementing a Share This Page block

2. Managing content approvals

3. Sending notifications

4. Implementing a commenting solution

5. Importing images with code

6. Implementing a custom KPI

Customizing and Extending Episerver Content Cloud

Page 45

Copyright © 2020 Episerver. All rights reserved.

Episerver

Module C

Integrating Data

Customizing and Extending Episerver Content Cloud

An Episerver site can contain content that does not need to have all

the functionality that regular editorial content has, such as versions,

scheduling, etc. You can choose to save it to the Dynamic Data

Store, or you may need to integrate an external data store.

Customizing and Extending Episerver Content Cloud

Page 52

Copyright © 2020 Episerver. All rights reserved.

Episerver

Module agenda

• Understanding GDPR

• Storing data with Dynamic Data Store

• Gathering data from visitors

• Marketing automation

• Episerver user profiles

• Synchronizing data

• Implementing REST APIs

• Implementing a partial router

• Implementing a content provider

Module C – Integrating Data

• Exercises C1 to C4

• Exercise C1 – Implementing favorite pages with DDS

• Exercise C2 – Integrating external data using a partial route

• Exercise C3 – Gathering data using Episerver Forms

• Exercise C4 – Importing data using a scheduled job

Customizing and Extending Episerver Content Cloud

Page 53

Copyright © 2020 Episerver. All rights reserved.

Episerver

Data integration choices

Technology Direction Description

Dynamic

Data Store

Two-way,

read-write

Scheduled

Jobs and

Content Events

Two-way,

read-write

REST APIs Varies

Partial Router One-way,

read-only

Content Provider Two-way,

read-write

Profile Store

and Analytics

Two-way,

read-write

Module C – Integrating Data

Custom storage of almost any .NET type or property bag. Performance can be poor

and there are no relationships between entities.

Custom job to import/export to/from an external system on a regular schedule or

when manually started, and IContentEvents to listen for content events and perform

live push synchronize to external systems.

Content Delivery and Service API for integration with external systems.

URL path that pulls data from an external system to be rendered by a content

template. Episerver Commerce has a HierarchicalCatalogPartialRouter.

Manage content stored in an external system. Episerver CMS uses the

DefaultContentProvider. Episerver Commerce has a CatalogContentProvider.

Track and store visitor profiles in our customer data platform (CDP) for centralized

and easier GDPR compliance and integration with Episerver Personalization.

Customizing and Extending Episerver Content Cloud

Page 54

Copyright © 2020 Episerver. All rights reserved.

The Episerver platform and GDPR
https://world.episerver.com/documentation/developer-guides/gdpr-guidelines/

Episerver CMS
https://world.episerver.com/documentation/developer-guides/gdpr-guidelines/the-episerver-platform-and-

gdpr/episerver-cms/

Episerver Personalization
https://world.episerver.com/documentation/developer-guides/gdpr-guidelines/the-episerver-platform-and-

gdpr/episerver-personalization/

Disable visitor group personalization
IPersonalizationEvaluator is an interface that can be implemented to control whether personalization

should occur or not. Episerver CMS includes an implementation that checks for presence of a Do Not Track

header. If the header is present, no personalization is done for the request and no cookies are stored.

https://world.episerver.com/documentation/developer-guides/CMS/personalization/disable-visitor-group-

personalization/

The Ultimate GDPR Guide for Marketers and Businesses
https://appinstitute.com/gdpr-guide/

How GDPR Will Change The Way You Develop
https://www.smashingmagazine.com/2018/02/gdpr-for-web-developers/

GDPR – A PRACTICAL GUIDE FOR DEVELOPERS
https://techblog.bozho.net/gdpr-practical-guide-developers/

GDPR: The difference between Personally Identifiable Information (PII) and Personal Data
https://www.linkedin.com/pulse/gdprthe-difference-between-personally-identifiable-jim-seaman

Episerver

Understanding the General Data Protection Regulation (GDPR)

As defined by GDPR, “‘personal data’ shall mean any information relating to an identified or

identifiable natural person (‘Data Subject’); an identifiable person is one who can be identified, directly

or indirectly, in particular by reference to an identification number or to one or more factors specific to

his physical, physiological, mental, economic, cultural or social identity.”

The rights of the Data Subject, and the processes or features you might have to implement:

• Erasure: the ability to remove a Data Subject’s data from the system.

• Restriction of processing: mark their data as restricted and don’t view it without further consent.

• Data portability: the ability to export a Data Subject’s data in a machine-readable format.

• Rectification: the ability to get a Data Subject’s data fixed, preferably themselves through a profile.

• Informed: providing clear, understandable information, rather than long terms and conditions.

• Access: a Data Subject should be able to see all the data you have about them.

Understanding GDPR

Important Note
This course topic does not constitute legal advice.

Privacy by Design
https://www.ipc.on.ca/resource/privacy-by-design/

Processing of special categories of personal data: https://gdpr-info.eu/art-9-gdpr/

Customizing and Extending Episerver Content Cloud

Page 56

Copyright © 2020 Episerver. All rights reserved.

Episerver

GDPR and gathering data from visitors with forms

Is this form GDPR-compliant? What must you do to make it so?

• No, it is not. You must unbundle consent.

Understanding GDPR

GDPR and Episerver: Unbundled consent in signup forms
https://www.epinova.no/en/blog/gdpr-and-episerver-unbundled-consent-in-signup-forms/

By signing up for this event, you

also consent to us sending you

our monthly email newsletter.

General Data Protection Regulation and Episerver
Learn how to leverage your organization’s data to enable GDPR compliance. Learn about the impacts,

opportunities and key considerations to prepare for the new data protection law.

https://www.episerver.com/products/features/gdpr/

GDPR compliance audit of the Episerver "QJet" demo site
https://www.epinova.no/en/blog/gdpr-compliance-audit-of-the-episerver-qjet-demo-site/

GDPR and Episerver: Storing consent context in submitted form data
https://www.epinova.no/en/blog/gdpr-and-episerver-storing-consent-context-in-submitted-form-data/

10 Considerations for GDPR
https://www.episerver.com/learn/resources/blog/peter-yeung/10-considerations-for-gdpr-part-1/

https://www.episerver.com/learn/resources/blog/peter-yeung/10-considerations-for-gdpr-part-2/

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 57

Respect personalization policy to NOT collect data in FormElements
https://world.episerver.com/documentation/Release-Notes/ReleaseNote/?releaseNoteId=AFORM-1636

Episerver

Introduction to Dynamic Data Store (DDS)

DDS has an API and infrastructure for

the saving, loading, and searching of

both compile-time data types (.NET

object instances) and runtime data

types (property bags).

Examples of data to store:

• Comments about content items

• Page view statistics

• Visitor group statistics

• Visitor form submissions

• Visitor’s favorite content

Storing data with Dynamic Data Store

http://fast.wistia.net/embed/iframe/pw7ebt2st1?videoFoam=true

Customizing and Extending Episerver Content Cloud

Page 59

Copyright © 2020 Episerver. All rights reserved.

Inline mapping

Inline mapping is where a property of a class or PropertyBag can be mapped directly against one of the

tblBigTable database columns. The following types can be mapped inline:

All properties that cannot be mapped inline or as a collection are mapped as references. This means that their

properties are mapped in-turn as a subtype and a link row is added in the reference table to link the parent

data structure with the child data structure. This allows for complex trees of data structures (object graphs) to

be saved in the Dynamic Data Store at the cost of low performance.

Episerver

Understanding DDS structure

Mandatory columns

• pkId, Row: two integers combined are the primary key.

An entity may span more than one row.

• StoreName: the store that the entity belongs to.

• ItemType: the .NET full namespace and type name of the entity.

Optional columns

• IntegerXX (where XX is 01 through to 10 by default): these columns do not have indexes.

• Indexed_IntegerXX (where XX is 01 through to 03 by default): these columns have indexes.

• And so on for each simple data type

You can add up to 99 of each column by creating an SQL script and executing it during deployment.

Storing data with Dynamic Data Store

Customizing and Extending Episerver Content Cloud

Page 60

Copyright © 2020 Episerver. All rights reserved.

System.Byte System.Int16 System.Int32 System.Int64 System.Byte[]

System.Enum System.Single System.Double System.DateTime System.Char[]

System.String System.Char System.Boolean System.Guid EPiServer.Data.Identity

Episerver

Saving an entity to a DDS store

Define a type that you want to store, that optionally

implements IDynamicData:

Create a named store:

Save an entity to the store:

Storing data with Dynamic Data Store

public class Favorite : IDynamicData
{

public Identity Id { get; set; }
public string UserName { get; set; }

DynamicDataStore store = DynamicDataStoreFactory.Instance
.CreateStore("Favorites", typeof(Favorite));

Favorite fav = new ...;
store.Save(fav);

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 61

Episerver

Improving performance by using indexed columns

Decorate your DDS entity class and properties that you want to search and filter on with attributes:

Dynamic data store is slow, (but) you can do better:

https://vimvq1987.com/dynamic-data-store-is-slow-but-you-can-do-better/

Storing data with Dynamic Data Store

[EPiServerDataStore]
public class Favorite : IDynamicData
{
public Identity Id { get; set; }

[EPiServerDataIndex]
public string Username { get; set; }

Task Milliseconds Indexed

Creating 10,000 items 11,938 7,741

Querying 10,000 items 118,009 2,867

Deleting 10,000 items 25,131 25,019

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 62

Episerver

Retrieving or deleting an entity from a DDS store

Use LINQ to query the store or Load() to retrieve a single entity:

Delete an entity with its ID or itself:

Storing data with Dynamic Data Store

IEnumerable<Favorite> favorites = store.Items<Favorite>()
.Where(fav => fav.UserName == userName)
.OrderBy(fav => fav.Created);

store.Delete(fav.Id);

store.Delete(fav);

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 63

Episerver

Understanding form technologies

When would you choose to use XForms? When would you choose to use Episerver Forms?

• XForms: if you must use (1) ASP.NET Web Forms, or (2) Episerver CMS 8 or older.

• Episerver Forms: all other scenarios, i.e. only supports ASP.NET MVC with Episerver CMS 9 or later.

Where are Episerver Forms form definitions stored? Where are visitor form submissions stored?

• Form Definitions: CMS content tables like blocks.

• Form Submissions: Dynamic Data Store (by default).

How can you change the style of an Episerver Forms form?

• You can alter the default styling by directly modifying the CSS file in
wwwroot\modules_protected\EPiServer.Forms\0.22.0.9000\ClientResources\ViewMode

Gathering data from visitors

GDPR guidelines for Episerver Forms
https://world.episerver.com/documentation/developer-guides/gdpr-guidelines/the-episerver-platform-and-gdpr/episerver-forms/

Review Episerver Forms documentation
http://world.episerver.com/documentation/developer-guides/forms/

http://world.episerver.com/add-ons/episerver-forms/

http://world.episerver.com/blogs/Allan-Thran/Dates/2015/11/introducing-episerver-forms/

http://world.episerver.com/documentation/developer-guides/forms/css-styling-and-javascript/

Customizing and Extending Episerver Content Cloud

Page 65

Copyright © 2020 Episerver. All rights reserved.

Episerver

Handling Episerver Forms events

Developers can handle server-side events for forms in an initialization module.

FormsSubmitting event: process the data on each step or cancel a visitor’s submission:

Gathering data from visitors

formsEvents = context.Locate.Advanced.GetInstance<FormsEvents>();
formsEvents.FormsSubmitting += FormsEvents_FormsSubmitting;

private void FormsEvents_FormsStepSubmitting(object sender, FormsEventArgs e)
{

var args = e as FormsSubmittingEventArgs;

IEnumerable<FriendlyNameInfo> elements = formRepository.GetDataFriendlyNameInfos(
new FormIdentity(e.FormsContent.ContentGuid, language: null));

FriendlyNameInfo firstNameElement = elements
.FirstOrDefault(item => item.FriendlyName == "FirstName");

if (firstNameElement != null) {
object firstName = args.SubmissionData.Data

.FirstOrDefault(x => x.Key == firstNameElement.ElementId); // __field_118

Other events:
• FormsStepSubmitted
• FormsSubmissionFinalized
• FormsStructureChange

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 66

Episerver

Creating data feeds for form selections

Selection element can be populated manually or from a custom data source.

1. Implement and register a data feed dependency service:

2. Implement a feed provider:

Gathering data from visitors

[ServiceConfiguration(ServiceType = typeof(IFeed))]
public class FruitFeed : IFeed, IUIEntityInEditView
{

private string description = "Tasty fruit";

public IEnumerable<IFeedItem> LoadItems()
{

yield return new FeedItem { Key = "Apples", Value = "A" };
yield return new FeedItem { Key = "Bananas", Value = "B" };
yield return new FeedItem { Key = "Cherries", Value = "C" };

public class FeedProvider : IFeedProvider
{

public IEnumerable<IFeed> GetFeeds()
{

return ServiceLocator.Current.GetAllInstances<IFeed>();

Key is the text shown to visitor.

Value is what gets stored.

https://world.episerver.com/blogs/hieu-nguyen-trung/dates/2017/2/create-
data-feeds-for-episerver-forms/

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 67

Episerver

Episerver Forms 2 or later

Creating custom actors

Episerver Forms include two built-in actors:

SendEmailAfterSubmissionActor and

CallWebhookAfterSubmissionActor.

To define a custom actor you must:

• Inherit from PostSubmissionActorBase base

class or implement the IPostSubmissionActor

interface.

• Implement IUIPropertyCustomCollection

interface.

Gathering data from visitors

https://world.episerver.com/documentation/developer-guides/forms/implementing-a-customized-actor/

Populate Episerver Insight profiles from Episerver Form fields

https://www.david-tec.com/2018/04/populate-episerver-insight-profiles-from-episerver-formfields/

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 68

Episerver Profile store is an tool for capturing profile

information and behaviours that can be visualised in

Episerver Insight. Episerver Profile store can be

connected to any system using standard RESTful

APIs to update and add profile information for users.

However there isn't currently an out the box way for

users to collect user data using Episerver Forms and

push this data into Episerver Profile store which can

be seen in the Episerver Insight UI. David Knipe

decided to create an add-on that would allow editors

to map Episerver Form fields to Episerver

Insight/Profile store fields. When using it editors set

up their form as normal but also get an additional

tab called "Insight profile mappings". This tab can be

used to specify a property to save the form data to in

the Episerver Insight profile.

Episerver

Episerver Forms 4.3 or later

Creating custom form elements

1. ElementBlockBase class is the

only type allowed in the form

container’s content area so to

define your own custom form

elements you must inherit from

it directly or indirectly.

2. Inherit from

ValidatableElementBlockBase–

derived classes to enable

validation.

Gathering data from visitors

1

2

https://world.episerver.com/documentation/developer-guides/forms/creating-form-element-with-validator/

Extending Episerver Forms: Postcode Lookup Tool
https://world.episerver.com/blogs/david-harlow/dates/2017/12/extending-episerver-forms-postcode-lookup-

tool/

Custom FieldSet element block for EPiServer.Forms
https://world.episerver.com/blogs/le-giang/dates/2018/2/custom-fieldset-emelent-block-for-episerver-form/

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 69

Episerver

Episerver Forms 4.6 or later

Protecting visitor form submissions with encryption

Gathering data from visitors

How can you comply with legal requirements to protect privacy by encrypting form submissions?

• Configure Episerver Forms to use Azure KeyVault to store an Advanced Encryption Standard (AES)

symmetric algorithm key and use it for encryption and decryption.

How do you enable Episerver Forms encryption?

1. Create a secret in Azure KeyVault.

2. Install the Nuget package EPiServer.Forms.Crypto.AzureKeyVault

3. Enable session state.

4. Modify the storage provider configured in the

~/modules/_protected/EPiServer.Forms/Forms.config file as described at the following link:

http://world.episerver.com/documentation/developer-guides/forms/encrypting-form-data/

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 70

Episerver

Episerver Forms 4.6.1 or later

Customizing the storage mechanism

Gathering data from visitors

You can replace Dynamic Data Store (DDS) with

another data storage system for visitor submissions.

1. Inherit from PermanentStorage and decorate with ServiceConfiguration

attribute:

2. Set up your storage provider, for example, MongoDb or Azure Tables.

3. Override and implement the methods: SaveToStorage, UpdateToStorage,

LoadSubmissionFromStorage (two overloads), and Delete.

[ServiceConfiguration(typeof(IPermanentStorage))]
public class MongoDbPermanentStorage : PermanentStorage

https://world.episerver.com/documentation/developer-guides/forms/creating-new-data-storage-mechanism/

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 71

Episerver

Episerver Forms 4.15 or later

Building dynamic form field dependencies

72

Episerver Forms now lets you hide or

show a field based on input to

another form field. You create rules

for field elements on a new

Dependencies tab in the element

properties.

For example, if a visitor answers

“Food” to the question “Best thing

about the Coffee House”, an

additional question is displayed,

“Which food do you like in particular?”

Gathering data from visitors

Allow editor to build dynamic form field dependencies

You can create dependency rules for the following field element types:

• Choice element

• ImageChoice element

• Number element

• Range element

• Selection element

• TextArea element

• TextBox element

• Url element

• FileUpload element

• Multi or single choice element

Custom elements (like the ones in Forms.Sample) may not work well with field dependency by default. If you

create custom elements, you are responsible for making them compatible with field dependency.

https://world.episerver.com/documentation/Release-Notes/ReleaseNote/?releaseNoteId=AFORM-1499

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 72

Episerver

Episerver Forms 4.16 or later

Handling submission actor’s result

73

Previously, Episerver Forms did not handle submission actor’s result. Actors could return results but

they were ignored. This feature allows actors to:

• Return signal to cancel form submission in case actor running fails.

• Return error message which can be displayed to visitors.

There are some changes when implementing actors in order for the above to work:

• Actors must implement ISyncOrderedSubmissionActor.

• Actors must return object instance of a class which implements

EPiServer.Forms.Core.PostSubmissionActor.Internal.ISubmissionActorResult.

By implementing this interface, the returned result will have two properties:

• CancelSubmit (bool): determine whether the form submission should be cancelled or not.

• ErrorMessage (string): this error message will be displayed to visitors.

Gathering data from visitors

Synchronous processing of form submissions

Actors implementing this interface will run synchronously in ascending order, regardless of

IsSyncedWithSubmissionProcess value (we force the actor to run synchronously because we cannot control

the result of async actors).

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 73

Episerver

Understanding marketing automation

Episerver Connect for Marketing Automation lets marketers automate

marketing activities based on the behavior of website visitors. Marketers

can create mobile campaigns, landing pages, and target groups of

people for email notifications.

For example, when a visitor submits a form, (created with Episerver

Forms perhaps to receive a newsletter subscription), the form data is

automatically stored in Episerver Campaign or your connector database.

You can use that data for marketing actions, such as welcoming a new

customer, engaging in cross-selling, rewarding your best customers, or

following up on recent purchases. You can connect form fields with the

connector's by using the Episerver Forms Marketing Automation.

Gathering data from visitors – Marketing automation

• Episerver Connect for Campaign

• Episerver Eloqua connector

• Episerver ExactTarget connector

• Episerver HubSpot connector

• Episerver Marketo connector

• Episerver Microsoft Dynamics

CRM connector

• Episerver Pardot connector

• Episerver Salesforce connector

• Episerver Silverpop connector

https://nuget.episerver.com/?q=a
utomation&s=Popular&r=All&f=All

• Sample Connector for developers

to write their own.

June 2018

Install-Package EPiServer.ConnectForMarketingAutomation
Install-Package EPiServer.Marketing.Automation.Forms

Install-Package EPiServer.ConnectForCampaign

Marketing Automation

System administrators should be aware of the Fetch data from MAI Connector scheduled job. It improves the

performance of Marketing Automation connectors by fetching and caching databases and lists (wherever

applicable) upon site initialization.

http://webhelp.episerver.com/latest/addons/marketing-automation/episerver-connect-for-ma.htm

Sample connector – IMarketingConnector

The Sample Connector demonstrates how you can build custom connectors for use with the Marketing

Automation framework.

https://world.episerver.com/add-ons/sample-connector-imarketingconnector/

Episerver Marketing Connectors

EPiServer Connect for Marketing Automation 5.0.0 package lets you configure multiple instances of a

connector with different credentials that will act independently within the CMS. The initial implementation of

this feature does not have a user interface so you have to configure the second instance of the same

connector with code.

https://world.episerver.com/blogs/jason-masterson/dates/2018/7/episerver-marketing-connectors--
-multiple-instances/

Multiple external systems

From version 4.18.0, Episerver Forms can support multiple external systems. Editors can choose one of the

registered systems as connected data source in the user interface.

https://world.episerver.com/documentation/developer-guides/forms/multiple-external-systems/

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 75

Episerver

Understanding Episerver Connect for Campaign

Episerver Connect for Campaign is

an add-on that connects Episerver

CMS, Episerver Forms, and

Episerver Campaign.

• You can collect visitor data and

pass that on to Campaign.

• In Campaign, the data is added to

a recipient list, which can be used

to create campaigns across

different channels such as web,

email, and mobile text messages.

Gathering data from visitors – Marketing automation

http://webhelp.episerver.com/latest/addons/marketing-automation/connect-for-campaign.htm

To start using Connect for Campaign, the following steps must be performed:

1. A developer must install the add-on, as well as Connect for Marketing Automation, Episerver Forms, and

the Episerver Forms Marketing Automation connector.

2. The system administrator must authenticate the Connect for Campaign connector with Episerver

Campaign.

3. Your website must be set up with Episerver forms.

4. You must map the form to a recipient list in Episerver Campaign.

5. You must map the form elements to specific fields in the recipient list.

http://webhelp.episerver.com/latest/addons/marketing-automation/connect-for-campaign.htm

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 76

Episerver

Implementing Episerver user profiles

1. Web.config: Define properties and where to store them:

2. Razor view: Define a profile form to enable the visitor

to register or log in and view or update their own data:

3. Controller: Implement an action method to save changes to the current visitor’s profile:

Episerver user profiles

@using (Html.BeginForm(actionName: "UpdateProfile", controllerName: null))
{

<input name="email" placeholder="Email" value="@EPiServerProfile.Current.Email" />
...
<input type="submit" value="Update" />

}

public ActionResult Update(string email, ...)
{

var profile = EPiServerProfile.Current; profile.Email = email;
profile.Save();
return RedirectToAction("Index");

}

<profile defaultProvider="DefaultProfileProvider">
<properties>

<add name="Email" type="System.String" />
...

<providers>
<add name="DefaultProfileProvider"

connectionStringName="EPiServerDB" ... />

Add custom properties to the ASP.NET profile configuration, and then get and set through the

TryGetProfileValue() and TrySetProfileValue() methods:

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 78

<profile defaultProvider="DefaultProfileProvider">
<properties>
<add name="Address" type="System.String" />
<add name="ZipCode" type="System.String" />
<add name="Locality" type="System.String" />
<add name="Email" type="System.String" />
<add name="FirstName" type="System.String" />
<add name="LastName" type="System.String" />
<add name="Language" type="System.String" />
<add name="Country" type="System.String" />
<add name="Company" type="System.String" />
<add name="Title" type="System.String" />
<add name="CustomExplorerTreePanel" type="System.String" />
<add name="FileManagerFavourites" type="System.Collections.Generic.List`1[System.String]" />
<add name="EditTreeSettings" type="EPiServer.Personalization.GuiSettings, EPiServer" />
<add name="ClientToolsActivationKey" type="System.String" />
<add name="FrameworkName" type="System.String" />

</properties>
<providers>

<add name="DefaultProfileProvider" type="System.Web.Providers.DefaultProfileProvider, ..."
connectionStringName="EPiServerDB" applicationName="/" />

</providers>
</profile>

Episerver

Data storage

ASP.NET Identity

• AspNetRoles: e.g. WebAdmins

• AspNetUsers: e.g. Admin

• AspNetUserRoles: membership mappings between users and roles.

ASP.NET Profiles (part of ASP.NET SQL Membership)

• Users: UserName matches with authentication system.

• Profiles: storage of custom profile properties like

Country and Email.

Episerver user profiles

Set the correct email address

If you use the [PageViewTracking] attribute or the ITrackingService to track page views and you do not

explicitly set the User property, then you must make sure that the correct username and email are set in the

Episerver profile system, not in the authentication system. The email address stored in the AspNetUsers table

is ignored by Profile Store, and it uses the UserName and Email in the Profiles table instead.

The tracking data interceptor named UserDataTrackingDataInterceptor is registered with a SortOrder of

210, and will check the User property. If it is null, then it sets it to use the UserName and Email from the

visitor’s Episerver profile. It will also add three profile properties to the Info dictionary: Title, Company, and

Country.

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 79

Episerver

Scheduled jobs and multiple servers

In a multiple server deployment, how can you control which server executes scheduled jobs?

• Set the enableScheduler attribute to true on the applicationSettings configuration element on the

site that should execute the jobs, and to false on the other sites.

What happens if you leave scheduled jobs enabled on multiple servers?

• Each job is scheduled for execution on all sites. However, the first site that starts executing a job

marks it in tblScheduledItem as executing, so the other sites do not execute that job in parallel.

Why should you assign a GUID in the [ScheduledPlugin] attribute?

• If you don’t, and then change the display name, a duplicate job is registered and both will execute!

Name a job that is configured to execute once per hour by default?

• Publish Delayed Page Versions or Remove Permanent Editing

Name a job related to deleting content that is configured to execute once per week by default?

• Automatic Emptying of Recycle Bin, Remove Unrelated Content Assets, or Remove Abandoned BLOBs

Synchronizing data

<episerver>
<applicationSettings enableScheduler="false"

Customizing and Extending Episerver Content Cloud

Page 81

Copyright © 2020 Episerver. All rights reserved.

If IIS crashes or is recycled when a job is running, the scheduler runs the job on the next scheduled time by

default. If you mark it as a restartable job then it is started again immediately. The job can restart on any

available server.

The job should also be implemented in such a way that it can be started repeatedly. For example, if the job

processes data, it should be able to continue where it was aborted. It is also recommended to implement a

stoppable job, but be aware that the Stop method will only be called for controlled shutdowns, and not for

uncontrolled shutdowns such as an IIS crash or other external changes. There are a maximum number of 10

start attempts per job.

Requires Episerver CMS 10.8 or later.

Episerver

Implementing scheduled jobs

Where are scheduled jobs hosted? What should you consider?

• Scheduled jobs are hosted and run inside the website, so if the application pool hosting your site

terminates after 20 minutes of inactivity then the jobs will not run. Ping the site to keep it running.

What are the minimum requirements for class that implements a scheduled job?

• A class decorated with [ScheduledPlugin] that sets a name and has a static Execute() method.

What is the recommended way to implement a scheduled job? Why?

• Inherit from ScheduledJobBase because it has a IsStoppable property, Stop() method, and

OnStatusChanged event for updating the user interface with messages.

How can you enable a scheduled job to run again immediately in case of server failure and reboot?

• Set Restartable = true in the [ScheduledPlugin] attribute and implement the Execute() method

to track the work completed and continue from that point when it calls Execute() again.

Synchronizing data

http://world.episerver.com/documentation/developer-guides/CMS/scheduled-jobs/

Customizing and Extending Episerver Content Cloud

Page 82

Copyright © 2020 Episerver. All rights reserved.

[ScheduledPlugIn(DisplayName = "Simulated Job", Restartable = true)]
public class SimulatedScheduledJob : ScheduledJobBase
{

private bool _stopSignaled;

public SimulatedScheduledJob()
{

IsStoppable = true;
}

public override void Stop()
{

_stopSignaled = true;
}

Episerver

Handling problems with scheduled jobs

What happens when an exception occurs within the job?

• Unhandled exceptions are automatically caught and returned to the user interface as a “failed” job.

How should you test a scheduled job? Why?

• You should test the job by starting it manually and by setting it to start at a future time. This is

because when started manually, the job will run with the security context of the logged in CMS Admin,

but when started at a future time, the security context will be null.

• In the implementation of the

Execute() method you should

check the security context and

create one if necessary for the

job to run successfully:

Synchronizing data

public override string Execute()
{

if (HttpContext.Current == null)
{

PrincipalInfo.CurrentPrincipal = new GenericPrincipal(
new GenericIdentity("Scheduled Job Demo"),
new[] { "Administrators, CmsAdmins" });

}

Customizing and Extending Episerver Content Cloud

Page 83

Copyright © 2020 Episerver. All rights reserved.

public override string Execute()
{

// if this job is run manually then this will NOT be null and the current user
// permissions will be checked, else, we might need to assign higher permissions.
if (HttpContext.Current == null)
{

PrincipalInfo.CurrentPrincipal = new GenericPrincipal(
new GenericIdentity("Scheduled Job Demo"),
new[] { "Administrators" });

}

OnStatusChanged(string.Format("Starting execution of {0}", GetType()));
var r = new Random();
int percentComplete = 0;
while (percentComplete < 100)
{

System.Threading.Thread.Sleep(2000);
percentComplete += r.Next(5, 15);
OnStatusChanged(string.Format(

"{0}% complete. Please wait...", percentComplete));
if (_stopSignaled)
{

return "Stop of job was called";
}

}
return "Completed successfully!";

}

Episerver

Integrating data with content events

How should you create a system-level event handler to synchronize content with an external system?

Synchronizing data

[InitializableModule] [ModuleDependency(typeof(EPiServer.Web.InitializationModule))]
public class SynchronizeContentInitializationModule : IInitializableModule
{

private bool executed = false;
private IContentEvents events;

public void Initialize(InitializationEngine context)
{

if (!executed)
{

events = context.Locate.Advanced.GetInstance<IContentEvents>();
events.PublishingContent += Events_PublishingContent;
executed = true;

}
}

public void Uninitialize(InitializationEngine context)
{

events.PublishingContent -= Events_PublishingContent;
}

Create an initialization module with an

idempotent Initialize() method to

handle the event(s) and remove the

event handler(s) in Uninitialize().

Customizing and Extending Episerver Content Cloud

Page 84

Copyright © 2020 Episerver. All rights reserved.

Episerver

Handling content events

What information is available in an event handler?

EPiServer.ContentEventArgs properties:

• To get information about the event: Content,

• To prevent the event and show a message why: CancelAction, CancelReason

Synchronizing data

private void Events_PublishingContent(object sender, EPiServer.ContentEventArgs e)
{

if ((e.Content as PageData).Name.ToLower().Contains("bad word"))
{

e.CancelAction = true;
e.CancelReason = "Content names cannot contain \"bad word\".";

}
}

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 85

Episerver

Understanding Episerver Service API

Implementing REST APIs

Episerver Service API is a service layer available for

system integrators to update and retrieve information

from Episerver, ensuring a seamless integration with

external systems such as PIM, DAM, and ERP.

Service API provides a REST API for performing operations like:

• Import and export of "episerverdata" files, Episerver Forms data, and media and catalog data in

Commerce.

• Bulk asset linking between media and catalog content in Commerce.

• "RESTful" CRUD operations for managing individual catalogs, nodes, entries, and warehouses in

Commerce.

Video: http://fast.wistia.net/embed/iframe/3ggaanph3f?videoFoam=true

Customers

CMS content import/export service URLs

CMS site bulk import with file
episerverapi/commerce/import/cms/site/{siteName}/{hostname}/{culture=}

CMS site bulk import with file upload identifier
episerverapi/commerce/import/cms/site/{siteName}/{hostname}/{uploadId:guid}/{culture=}

CMS assets bulk import with file
episerverapi/commerce/import/cms/assetglobalroot

CMS assets bulk import with file upload identifier
episerverapi/commerce/import/cms/assetglobalroot/{uploadId:guid}

CMS bulk export
episerverapi/commerce/export/site/{siteName}

Learn more

https://world.episerver.com/documentation/developer-guides/Episerver-Service-API/working-with-bulk-
operations-using-tasks/cms-content-import-service/

Customizing and Extending Episerver Content Cloud

Page 87

Copyright © 2020 Episerver. All rights reserved.

Episerver

Understanding Content Delivery API

Allows you to get content, i.e. anything that implements IContent, via a RESTful API, for example:

Content Delivery API has a dependency on Episerver Search & Navigation for its search capabilities.

Episerver Content Api: https://sdk.episerver.com/ContentDeliveryAPI/Index.html

Getting Started with Content Delivery API: https://mmols.io/getting-started-with-the-episerver-content-delivery-api/

Extended routing: https://world.episerver.com/blogs/Johan-Bjornfot/Dates1/2018/5/extended-routing-for-episerver-content-delivery-api/

Customizing: https://talk.alfnilsson.se/2018/04/24/tweaking-and-extending-serialization-from-episerver-content-delivery-api/

Implementing REST APIs

GET /api/episerver/content/{referenceORguid}

Install-Package EPiServer.ContentDeliveryApi –ProjectName AlloyAdvanced

GET /api/episerver/search/content/?query=alloy&filter={OData 4 syntax}&personalize=true

Content Delivery API
https://world.episerver.com/documentation/developer-guides/CMS/Content/content-delivery-api/

https://www.david-tec.com/2018/06/episerver-as-headless-episerver-ascend-2018-presentation/

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 88

Episerver

Understanding a partial router

You can use partial routing either to link to data outside Episerver CMS or to link to other content types

than pages. In Episerver Commerce, partial routing is used for presenting catalog content to visitors.

A partial router must implement the EPiServer.Web.Routing.IPartialRouter interface.

It requires the following two methods:

• RoutePartial()

Called when the ordinary page routing has routed to a page of type TContent and there is a

remaining part of the URL. The implementation can then route the remaining part of the URL.

• GetPartialVirtualPath()

Called when an outgoing URL is constructed for a content instance of type TRoutedData.

Implementing a partial router

public class NorthwindToCategoryPartialRouter : IPartialRouter<NorthwindPage, Category>

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 90

Episerver

Registering a partial router and converting non-content into its URL

Partial routers must be registered using an initialization module:

Get the URL using GetVirtualPathForNonContent() method:

Implementing a partial router

public void Initialize(InitializationEngine context)
{

RouteTable.Routes.RegisterPartialRouter(
new NorthwindToCategoryPartialRouter());

var vpath = UrlResolver.Current.GetVirtualPathForNonContent(
partialRoutedObject: category,
language: null, virtualPathArguments: null);

string url = vpath.GetUrl(); Calls GetPartialVirtualPath()

on your custom partial router.

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 91

http://world.episerver.com/documentation/developer-guides/CMS/Content/Content-providers/

Episerver

Registering a content provider

A content provider connects an Episerver CMS site to an external data source so that the data appears

to be part of the Episerver CMS website.

Register custom content providers in Web.config or by creating an initialization module that uses

IContentProviderManager to add a provider to the mappings.

A custom content provider cannot deliver the start page, root page, or trash.

Implementing a content provider

<episerver>
<contentProvider>

<providers>
<add name="NursesContentProvider"

type="NursesServer.NursesContentProvider, NursesServer" entryPoint="52"
capabilities="Create,Edit,Delete,Search,Wastebasket"/>

entryPoint specifies which existing page in Episerver CMS is the root for the content

served by the content provider instance. It must not have any existing children. If the

content provider does not give an entry point, it does not appear in the Pages tree.

Customizing and Extending Episerver Content Cloud

Page 93

Copyright © 2020 Episerver. All rights reserved.

Episerver

Implementing a content provider

When you create a custom content provider, the minimum is to implement one abstract method:

• LoadContent(): returns a single item of content

You can override many other methods to offer more functionality to the content provider, for example:

• Copy(), Move(), Save(), Delete(), DeleteChildren(), DeleteLanguageBranch()

Example content provider to incorporate YouTube content: https://github.com/episerver/YouTubeContentProvider

Implementing a content provider

public class CustomContentProvider : ContentProvider
{

protected override IContent LoadContent(
ContentReference contentLink, ILanguageSelector languageSelector)

{
return // implement

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 94

EpiserverEpiserver

Exercises C1 to C4

Integrating Data

1. Implementing favorite pages using DDS

2. Integrating external data using a partial router

3. Gathering data using Episerver Forms

4. Importing data using a scheduled job

Customizing and Extending Episerver Content Cloud

Page 95

Copyright © 2020 Episerver. All rights reserved.

Episerver

Module D

Customizing the Experience
for Editors

Properties are central in Episerver and something that the editor
uses daily. Common editor tasks can often be solved, given that
you as a developer know how the Episerver property works and

how it can be modified.

Customizing and Extending Episerver Content Cloud

Customizing and Extending Episerver Content Cloud

Page 100

Copyright © 2020 Episerver. All rights reserved.

Episerver

Module agenda

• Content type synchronization

• Backing types for properties

• Customizing property editing with hints

• Customizing with Dojo and other frameworks

Module D – Customizing the Experience for Editors

• Exercises D1 to D5

• Exercise D1 – Simple property customizations

• Exercise D2 – Selecting choices for property values

• Exercise D3 – Using a dropdown list to select a page

reference

• Exercise D4 – Customize any property at runtime using

EditorDescriptors

• Exercise D5 – Create a custom editing experience for date-

only pickers using Dojo

Customizing and Extending Episerver Content Cloud

Page 101

Copyright © 2020 Episerver. All rights reserved.

Episerver

What happens when a new content type is registered?

• tblContentType: a row is added for

the class.

• tblPropertyDefinition: a row is

added for each property.

• Each row indicates its data type

Content type synchronization

namespace EmptySite.Models.Pages
{

[ContentType(DisplayName = "Start",
GUID = "023964e5-9df2-4fa2-8434-7ccc20e5c4b8",
Description = "The site's home page.")]

public class StartPage : PageData
{

public virtual int Age { get; set; }

http://world.episerver.com/documentation/developer-guides/CMS/Content/Synchronization/

Each row in the tblPropertyDefinition table relates to the data type of the property:

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 103

Property types like AppSettings and Url are stored as String types.

Episerver

What happens when a content editor creates an instance of the content type?

• tblContent: a row is added for the content with

its path, i.e. ancestors, and a column to indicate

if it is a container or leaf node.

• tblContentLanguage: a row is added for each

language branch with values for name,

URLSegment, and so on.

Content type synchronization

How is a property block stored in the CMS database?

How is a shared asset block stored in the CMS database?

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 104

Episerver

What happens when a content editor sets Age to 45?

• tblContentProperty: a row is added with the value set in the column with the appropriate data type,

for example, for Age the Number column is used (all other columns are left NULL or default value):

• tblLanguageBranch: can be used to determine which

language branch the property value is for. In this case,

the value 45 for the Age is for English, the master

language branch for this website.

Content type synchronization

An instance of PersonBlock named Alice (Alice

Jones, 22 May 2018, Apple home page,

content reference to Start).

An instance of StartPage named Start with

Bob as Author.

Rows in tblContentProperties
Note the Author property’s four properties

have been stored as separate rows as if the

properties belonged to StartPage itself:

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 105

Episerver

Understanding backing types for properties

You cannot use all .NET types for properties in Episerver because their values need to be stored in a

backing type column in the database. The BackingTypeResolver matches .NET types to Episerver

database column types.

For example, string aka System.String maps to PropertyLongString

that gets stored in the tblContentProperty table’s LongString column.

Match the following .NET types to their Episerver types in the database or to Exception Thrown!

Backing types for properties

double DateTime float decimal int enum

Property
Date

Property
FloatNumber

Property
Number

Property
Boolean

Property
ContentReferenceList

Exception Thrown!

IList<PageReference>

If you want to use a type without a registered backing type, and that type can be converted into a simpler type,

for example enums can be converted into integers and strings, then you can apply the [BackingType] attribute

to specify how to store and type in the CMS database:

[BackingType(typeof(PropertyNumber))]
[UIHint("SortOrder")]
[DefaultValue(FilterSortOrder.PublishedDescending)]
public virtual FilterSortOrder SortOrder { get; set; }

Customizing and Extending Episerver Content Cloud

Page 107

Copyright © 2020 Episerver. All rights reserved.

Episerver CMS provides many built-in data types for properties. It is also possible to create your own

customized property types.

Customized property types can be implemented in the following ways:

• Use an existing property type as a base and change its behavior

• Create a custom property type from scratch

More information:
Validating property values, change rendering and change editing: http://world.episerver.com/Blogs/Linus-

Ekstrom/Dates/2012/12/Changes-for-properties-between-Episerver-6-and-7/

Advanced:

Configuring editors for your properties: http://world.episerver.com/blogs/Linus-

Ekstrom/Dates/2013/12/SingleMultiple-selection-in-Episerver-75/

Custom renderers for properties: http://world.episerver.com/Blogs/Linus-Ekstrom/Dates/2012/10/Custom-

renderers-for-properties/

Episerver

Defining custom property types

What are three ways to define a custom property type?

1. Define one by inheriting from PropertyData and registering a mapping from your .NET type to your

PropertyCustom type in the BackingTypeResolver.

2. Define one by inheriting from an existing property type, e.g. PropertyLongString, and then store

your .NET type using an efficient text serialization format like JSON.

3. Define a block content type and use it as a property type.

As an alternative to creating a new property type, consider using the [UIHint] attribute if you only want

to change the rendering or editing of a property.

Backing types for properties

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 108

Episerver

How are ContentAreas stored?

The references to content in a ContentArea are stored as XHTML:

Backing types for properties

<div data-classid="36f4349b-8093-492b-b616-05d8964e4c89"
data-contentguid="4dd25c5f-66f0-41d0-9075-d0688638fb78"
data-contentname="">{}</div>

<div data-classid="36f4349b-8093-492b-b616-05d8964e4c89"
data-contentguid="dec4ca88-68b6-471b-a3ba-5398bb65ad68"
data-contentname="" data-epi-content-display-option="narrow">{}</div>

<div data-classid="36f4349b-8093-492b-b616-05d8964e4c89"
data-contentguid="eca36ce9-569c-4d8b-9d0a-a14255d89c25"
data-contentname="" data-epi-content-display-option="narrow">{}</div>

<div data-classid="36f4349b-8093-492b-b616-05d8964e4c89"
data-contentguid="d2ac8d27-be00-427a-8563-9a86cd062b42"
data-contentname="" data-epi-content-display-option="narrow">{}</div>

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 109

Episerver

How are collections of links stored?

The links in a LinkItemCollection are stored as XHTML:

But it would cause a 404 if the page is removed or expires. An alternative would be to automatically

generate the collection of links programmatically because this would allow the developer to apply

filters that would remove any pages as soon as they are not published. For example, you could add a

property that references a container page and then render the children of that page. Or you could write

a search algorithm that returns a set of pages that match some criteria.

Backing types for properties

<links>
Alloy Plan
Alloy Track
Alloy Meet

</links>

Customizing and Extending Episerver Content Cloud

Page 110

Copyright © 2020 Episerver. All rights reserved.

Episerver

Selecting values

When editing a string property, how can you provide the Editor with a list of values to select from?

1. Create a class that implements ISelectionFactory:

2. Decorate the property with [SelectOne] for a dropdown, or [SelectMany] for check boxes:

Customizing property editing with hints

public class WorkStatusSelectionFactory : ISelectionFactory
{

public IEnumerable<ISelectItem> GetSelections(ExtendedMetadata metadata)
{

return new List<ISelectItem>
{

new SelectItem { Value = "FT", Text = "Full-time" },
new SelectItem { Value = "PT", Text = "Part-time" },

[SelectOne(SelectionFactoryType = typeof(WorkStatusSelectionFactory))]
public virtual string WorkStatus { get; set; }

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 112

using EPiServer.Shell.ObjectEditing;
using System.Collections.Generic;

namespace AlloyTraining.Business.SelectionFactories
{

public enum Continents
{

None, Africa, Asia, Europe, NorthAmerica, SouthAmerica, Antartica, Oceania
}

public class ContinentsSelectionFactory : ISelectionFactory
{

public IEnumerable<ISelectItem> GetSelections(ExtendedMetadata metadata)
{

return new List<SelectItem>
{

new SelectItem { Value = Continents.None, Text = "None" },
new SelectItem { Value = Continents.Africa, Text = "Africa" },
new SelectItem { Value = Continents.Asia, Text = "Asia" },
new SelectItem { Value = Continents.Europe, Text = "Europe" },
new SelectItem { Value = Continents.NorthAmerica, Text = "North America" },
new SelectItem { Value = Continents.SouthAmerica, Text = "South America" },
new SelectItem { Value = Continents.Antartica, Text = "Antartica" },
new SelectItem { Value = Continents.Oceania, Text = "Oceania/Australia" }

};
}

}
}

[SelectOne(SelectionFactoryType = typeof(ContinentsSelectionFactory))]
public virtual Continents Continents { get; set; }

Episerver

Understanding the UIHint attribute

Decorate a property with the [UIHint] attribute to control how the property is edited and displayed.

A string property is edited in a small textbox by default:

If we need a larger multiline text area instead, we can decorate it with UIHint.Textarea:

You can create a custom SiteUIHints:

But how does the system know what to do

with the custom string values?

…it is linked to an EditorDescriptor!

Customizing property editing with hints

public static class SiteUIHints
{

public const string Contact = "contact";
public const string Strings = "StringList";

public virtual string SomeText { get; set; }

[UIHint(UIHint.Textarea)]
public virtual string SomeText { get; set; }

UIHint.BlockFolder and UIHint.MediaFolder are deprecated in CMS 11. Use UIHint.AssetsFolder

instead.

Customizing and Extending Episerver Content Cloud

Page 113

Copyright © 2020 Episerver. All rights reserved.

Episerver

Understanding the EditorDescriptor type

Classes that derive from EditorDescriptor are used to control the editing experience.

They are registered to look for properties with

1. Matching target data type, and

2. Optional: Decorated with [UIHint]

with a matching string value.

Customizing property editing with hints

[EditorDescriptorRegistration(TargetType = typeof(string), UIHint = UIHint.Textarea)]
public class TextAreaEditorDescriptor : EditorDescriptor
{

public override void ModifyMetadata(
ExtendedMetadata metadata, IEnumerable<Attribute> attributes)

{
// use metadata to make changes to the Editor’s experience

[UIHint(UIHint.Textarea)]
public virtual string MyProperty { get; set; }

1

2

2

// EditorDescriptor, [EditorDescriptorRegistration]
using EPiServer.Shell.ObjectEditing.EditorDescriptors;

If you don’t apply a

[UIHint] then all

properties with that

type are customized.

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 114

Episerver

Understanding the ExtendedMetadata type

Common members to change include:

1. ClientEditingClass: name of a Dojo editor, e.g.

"dijit/form/DateTextBox" or
"epi-cms/contentediting/editors/SelectionEditor"

2. EditorConfiguration: a dictionary of

customizations e.g. "style" : "width: 600px;"

3. SelectionFactoryType: a class that implements

ISelectionFactory to get a list of choices

ExtendedMetadata indirectly inherits from

Microsoft’s ModelMetadata:

Customizing property editing with hints

using EPiServer.Shell.ObjectEditing; // ExtendedMetadata

1

2

3

public class ExtendedMetadata : DataAnnotationsModelMetadata

public class DataAnnotationsModelMetadata : ModelMetadata

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 115

Episerver

Understanding the ModelMetadata type

Common members to change include:

1. DataTypeName: e.g. "System.String"

2. DisplayName, Description, GroupName, Order: values

are normally set using [Display] attribute but could

be modified dynamically.

3. IsReadOnly: defaults to false but could be modified

using custom business logic to prevent an Editor

from changing the value.

4. Model and ModelType: the current value stored in the

property as an Episerver property type e.g. as a

PropertyLongString value.

Customizing property editing with hints

using System.Web.Mvc; // ModelMetadata

1

2

3

4

5

5. ShowForDisplay and

ShowForEdit: default

to true but could be

modified using

custom business logic

to hide the property.

2

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 116

Episerver

Controlling the popup during On-Page Editing

Customizing property editing with hints

UiWrapperType.FlyoutUiWrapperType.ContentEditable UiWrapperType.Floating

public override void ModifyMetadata(
ExtendedMetadata metadata, IEnumerable<Attribute> attributes)

{
metadata.CustomEditorSettings["uiWrapperType"] = UiWrapperType.Flyout;

Customizing and Extending Episerver Content Cloud

Page 117

Copyright © 2020 Episerver. All rights reserved.

https://dojotoolkit.org/reference-guide/1.10/dijit/index.html

dijit/form/CurrencyTextBox

A specialized input widget for monetary values, much like the currency type in spreadsheet programs

dijit/form/DateTextBox

An easy-to-use date entry control which allows either typing or choosing a date from any calendar widget

dijit/form/MappedTextBox

A subclass of dijit/form/ValidationTextBox that is designed to be a base class for widgets that have a visible

formatted display value, and a serializable value in a hidden input field which is actually sent to the server.

dijit/form/NumberSpinner

An input widget which restricts input to numeric input and offers down and up arrow buttons to “spin” the

number up and down

dijit/form/NumberTextBox

A input widget which restricts input to numeric input

dijit/form/RangeBoundTextBox

A base class for textbox form widgets which define a range of valid values.

dijit/form/Textarea

An auto expanding/contracting <textarea>

dijit/form/TimeTextBox

A time input control which allows either typing or choosing a time from any time-picker widget

dijit/form/ValidationTextBox

A class for textbox widgets with the ability to validate various types of content and to provide user feedback.

Inspired by David Knipe’s blog post, Creating a time picker property for Episerver using a Dojo dijit:

https://www.david-tec.com/2016/12/creating-a-time-picker-property-for-episerver-using-a-dojo-dijit/

Episerver

Understanding Dojo

Episerver CMS and our other products use Dojo to implement some of its user interface, like drag and

drop capability and custom widgets for editing.

Dojo is an open source JavaScript framework that includes the following components:

• Dojo: Core API of the framework. DOM manipulation, class declaration, event listening, messages

and asynchronous requests.

• Dijit: User interface system built on top of the Dojo core. Widget system used to handle visual

elements in a modular manner.

• Dojox: Sub-projects built on top of the Dojo core. Dojo plugins and new features.

Learn more about Dojo:
http://dojotoolkit.org/

Customizing with Dojo and other frameworks

Customizing and Extending Episerver Content Cloud

Page 119

Copyright © 2020 Episerver. All rights reserved.

Designing frontends for OPE without wrapping elements By John-Philip Johansson

A common scenario I have seen is that a frontend developer or designer implements a design in HTML, CSS,

and maybe JS, without worrying about which CMS is used to render it. The code is then copied or moved into

Episerver, most often into a Razor view, by an Episerver developer. Then everyone sees the page in On-Page

Edit (OPE) and gets a little sad as some of that lovely design is broken. That makes the developers get even

sadder as they have to re-do some of the design to work with the extra div elements added by OPE, but at

least it will look lovely again.

We would like you to use the HTML structure you want. If you are rendering and handling updates purely in

your client-side framework of choice, you should already be able to do this. If you are using Razor, then let us

discuss two common design implementations that break, and what we can do with them. But first, let us talk

about our two HTML helpers @Html.PropertyFor and @Html.EditAttributes.

https://world.episerver.com/blogs/john-philip-johansson/dates/2018/4/designing-frontends-for-
ope-without-wrapping-elements/

Introducing a new SPA template site: MusicFestival

To demonstrate some concepts that are useful when creating a SPA with working OPE, we have released a

new SPA template site on Github, called MusicFestival.

https://world.episerver.com/blogs/john-philip-johansson/dates/2018/10/introducing-a-new-
template-site-for-spas-musicfestival/

Episerver

Taking control of client-side rendering during On-Page Editing (OPE)

EPiServer.CMS.UI 10.12 introduced options to better control the On-Page Editing (OPE) experience for

websites that want to handle the view on the client-side with JavaScript frameworks such as Angular.

To enable this control is a two-step process:

1. To stop the CMS UI from replacing the DOM when an editor changes the value of a property, add

the HTML attributes: data-epi-property-render="none" data-epi-property-name="YourProp"

2. Whenever a save happens we will publish the details on a topic called "beta/contentSaved"

Taking control of client-side rendering in OPE
https://world.episerver.com/blogs/john-philip-johansson/dates/2017/10/taking-control-of-client-side-rendering-in-ope-beta/

https://world.episerver.com/blogs/john-philip-johansson/dates/2017/12/taking-more-control-of-client-side-rendering-in-ope-beta2/

https://world.episerver.com/blogs/john-philip-johansson/dates/2018/4/designing-frontends-for-ope-without-wrapping-elements/

https://world.episerver.com/blogs/john-philip-johansson/dates/2019/1/one-ope-attribute-to-rule-them-all-data-epi-edit-cms-ui-11-16-0/

A react widget in Episerver CMS (Revisited)
https://world.episerver.com/blogs/Ben-McKernan/Dates/2018/11/a-react-gadget-in-episerver-cms-revisited/

Customizing with Dojo and other frameworks

From EPiServer.CMS.UI 11.16.0, it is enough with one attribute:

data-epi-edit="YourProperty"

Customizing and Extending Episerver Content Cloud

Page 120

Copyright © 2020 Episerver. All rights reserved.

EpiserverEpiserver

Exercises D1 to D5

Customizing the Experience for Editors

1. Simple customizations include applying CSS

to a property editor and customizing the

TinyMCE rich text editor toolbar.

2. Setting property values using selection

factories and applying them with UIHints.

3. Using UIHints to select an editor.

4. Customize any property at runtime using an

EditorDescriptor.

5. Create a custom editing experience for date-

only pickers using Dojo.

Customizing and Extending Episerver Content Cloud

Page 121

Copyright © 2020 Episerver. All rights reserved.

Episerver

Module E

Customizing the Experience
for Visitors

Customizing and Extending Episerver Content Cloud

When building a site today you need to consider the different
channels that the content can be presented in. Content are also

often re-used in several places and need to be displayed
differently depending on the context. And you need to index

content to enable your visitors to easily search for it.

Customizing and Extending Episerver Content Cloud

Page 127

Copyright © 2020 Episerver. All rights reserved.

Episerver

Module agenda

• Rendering content references

• Customizing content routes

• Customizing visitor group criteria

• Indexing content with Episerver Search

Module E – Customizing the Experience for Visitors

• Exercises E1 to E4

• Exercise E1 – Using UIHints to select display templates

• Exercise E2 – Creating a PDF display channel

• Exercise E3 – Detecting visitor groups with cookies

• Exercise E4 – Adding fields to Episerver Search

Customizing and Extending Episerver Content Cloud

Page 128

Copyright © 2020 Episerver. All rights reserved.

Episerver

Rendering a content reference

Rendering content references

How can you render a ContentReference property in a view? What do you need to consider?

• If it points to a page or a media asset, then you can render it as a clickable hyperlink:

• If it points to any type of content, then you can render it using its partial template, if it has one:

@{

IContentLoader loader = ServiceLocator.Current.GetInstance<IContentLoader>();
IContent content = loader.Get<IContent>(Model.MyContentReference);
Html.RenderContentData(content, isContentInContentArea: false);

}

@Html.ContentLink(Model.MyContentReference, routeValues: null,
htmlAttributes: new { @class = "mobile" })

Better practice would be to load the content in the controller using a loader set via constructor parameter

injection and pass that content into the view instead of loading the content in the view as shown in this slide.

Customizing and Extending Episerver Content Cloud

Page 130

Copyright © 2020 Episerver. All rights reserved.

Taking control of content area rendering would also allow you to modify the markup used, so you could

implement a carousel instead of a stack of blocks:

http://world.episerver.com/Blogs/pezi/Dates/2013/5/Create-an-animating-slider-with-content-area/

Episerver

Taking control of content area rendering

Rendering content references

If a developer uses Html.PropertyFor() to render a content area then all content references will be

rendered using their partial templates in the order that the CMS Editor set them.

How can you limit which content references are rendered and in what order?

• Use LINQ to load the references, then filter and sort, and render with Html.RenderContentData():

IEnumerable<IContent> contentItems = Model.CurrentPage.MainContentArea.FilteredItems
.Select(item => loader.Get<IContent>(item.ContentLink));

IEnumerable<IChangeTrackable> teasers = contentItems.OfType<TeaserBlock>()
.Cast<IChangeTrackable>().OrderByDescending(item => item.Changed);

foreach (var item in teasers)
{

<small>Changed on: @item.Changed</small>
@{ Html.RenderContentData((IContentData)item, isContentInContentArea: true); }

Customizing and Extending Episerver Content Cloud

@{
var loader = ServiceLocator.Current.GetInstance<EPiServer.IContentLoader>();

var contentItems = Model.CurrentPage.MainContentArea.FilteredItems
.Select(item => loader.Get<IContent>(item.ContentLink));

var teasers = contentItems.OfType<TeaserBlock>()
.Cast<IChangeTrackable>()
.OrderByDescending(item => item.Changed);

foreach (var item in teasers)
{

<div>
<small>Changed on: @ item.Changed</small>
@{

Html.RenderContentData((IContentData)item,
isContentInContentArea: true);

}
</div>

}
}

Page 131

Copyright © 2020 Episerver. All rights reserved.

Episerver

Understanding content routes

By default, the Episerver extension methods like ContentLink() and ContentUrl() return the friendly

URL for content. But this can be customized.

For example, you might prefer to return the simple address if it is set. To do this, handle an event of the

IContentRouteEvents dependency service:

In the event handler, check if the content is a page, and return its ExternalURL property if set:

Customizing content routes

contentRouteEvents = context.Locate.Advanced.GetInstance<IContentRouteEvents>();
contentRouteEvents.CreatedVirtualPath += ContentRoute_CreatedVirtualPath;

var page = contentLoader.Get<IContent>(contentLink, langSelector) as PageData;
if (page != null && !string.IsNullOrEmpty(page.ExternalURL))
{

e.UrlBuilder.Path = page.ExternalURL;
}

davidknipe/AddTimeStampToImages.cs

Add a hash based on the image timestamp to ensure images are reloaded whenever they are changed.

https://gist.github.com/davidknipe/8a05d807dc73c198c51b

EpiCdnHandler

Customer origin CDN support for EpiServer 7.5 (or newer). The module will rewrite and handle all image urls. It

will add a version hash to the urls. The module will set http headers on the requests to "permanently" cache

the image files on the client.

https://github.com/torjue/EpiCdnHandler/blob/master/EpiCdnHandler/UrlBuilder.cs

CanonicalLink extension method

In Episerver CMS version 11.11.2, this method outputs a relative URL, but recently Google’s guidance for

canonical links recommends including your domain i.e. use absolute URLs, as discussed in the following link:

https://support.google.com/webmasters/answer/139066?hl=en

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 133

Episerver

Episerver CMS 11.8 or later

Disabling visitor group personalization

To create a GDPR-compliant website you need to be able to disable visitor group personalization for

visitors who have opted out.

It is easy to implement custom business logic for choosing when personalization is enabled, and we

provide a built-in evaluator that looks for the standard Do Not Track HTTP request header.

Customizing visitor group criteria

[InitializableModule]
[ModuleDependency(typeof(EPiServer.Web.InitializationModule))]
public class RegisterPersonalizationEvaluatorsInitialization : IConfigurableModule
{

public void ConfigureContainer(ServiceConfigurationContext context)
{

context.Services.AddTransient<IPersonalizationEvaluator,
DoNotTrackPersonalizationEvaluator>();

}

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 135

Episerver

Episerver CMS 11.9.1 or later

Enabling geographic visitor group criteria

How do you activate the Geographic Coordinate and Geographic Location visitor group criteria?

1. Install a NuGet package:

2. Download MaxMind DB and Locations CSV files:

3. Configure <geolocation> in Web.config:

Customizing visitor group criteria

Install-Package EPiServer.Personalization.MaxMindGeolocation -ProjectName AlloyAdvanced

https://dev.maxmind.com/geoip/geoip2/geolite2/

<episerver.framework>
<geolocation defaultProvider="maxmind2">
<providers>

<add name="maxmind2" type="EPiServer.Personalization.MaxMindGeolocationProvider, ..."
databaseFileName="App_Data\GeoLite2\GeoLite2-City.mmdb"
locationsFileName="App_Data\GeoLite2\GeoLite2-City-Locations-en.csv" />

Geolocation provider changes

Episerver CMS used to come with built-in Geolocation support for MaxMind’s GeoLite database, but MaxMind

has decided to discontinue our GeoLite Legacy databases effective January 2, 2019.

https://support.maxmind.com/geolite-legacy-discontinuation-notice/

As a replacement, MaxMind is instead offering the free GeoLite2 or the commercial GeoIP2 database which

both comes with IPv6 support.

A new provider for GeoLite2 databases

A new separate NuGet package called EPiServer.Personalization.MaxMindGeolocation has been released.

This package includes a Geolocation provider with support for MaxMind’s GeoLite2 database. The package is

distributed without a MaxMind Geolocation database.

You can acquire a Geolocation database from MaxMind by downloading the free GeoLite2 database at:

https://dev.maxmind.com/geoip/geoip2/geolite2/

You will also need to download the database in CSV format for the provider to be able to list all available

Locations. The provider will work with both the Country and City database types.

https://world.episerver.com/blogs/Henrik-Nystrom/Dates/2018/6/geolocation-provider-changes/

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 136

Disable visitor group personalization

IPersonalizationEvaluator is an interface that can be implemented to control whether personalization

should occur or not. Episerver CMS includes an implementation that checks for presence of a Do Not Track

header. If the header is present, no personalization is done for the request and no cookies are stored.

https://world.episerver.com/documentation/developer-guides/CMS/personalization/disable-visitor-group-

personalization/

Session handling in visitor group criteria

You can use visitor group criteria without requiring session state by disabling ASP.NET Session state. The

visitor group system will autodetect this configuration and switch to a cookie-based approach instead. You can

also customize your own storage of users' visitor group sessions.

https://world.episerver.com/documentation/developer-guides/CMS/personalization/session-handling-in-

visitor-group-criteria/

Episerver

Understanding visitor group personalization

Visitor group personalization works using a

combination of two classes:

1. A criterion model class that stores and

persists user input from the Visitor Group

edit user interface, e.g. working days

selected or a time range.

2. A criterion class that evaluates every HTTP

context request and compares it to the

data stored in the model to determine if

the criteria is fulfilled or not, and therefore

if the visitor belongs to the group and

should see the personalized content.

Customizing visitor group criteria

Customizing and Extending Episerver Content Cloud

Page 137

Copyright © 2020 Episerver. All rights reserved.

Episerver

Creating a criterion model class

Customizing visitor group criteria

public class TimeOfDayCriterionModel : CriterionModelBase
{

[Required]
public string TimeFrom { get; set; }

[Required]
public string TimeTo { get; set; }

[DojoWidget(SelectionFactoryType = typeof(DayOfWeekSelectionFactory))]
public DayOfWeek DayOfWeek { get; set; }

public override ICriterionModel Copy()
{

return ShallowCopy();
}

}

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 138

Episerver

Creating and registering a criterion class

1. Inherit from CriterionBase<T> where T is your criterion model class.

2. Decorate with [VisitorGroupCriterion] attribute to register in user interface.

3. Implement IsMatch(): read Model property and compare with user principal, HTTP context, etc:

Customizing visitor group criteria

[VisitorGroupCriterion(Category = "URL Criteria", DisplayName = "Time of Day",
Description = "Select a time range and day of the week.",
LanguagePath = "/visitorgroupcriteria/timeofday")]

public class TimeOfDayCriterion : CriterionBase<TimeOfDayCriterionModel>
{

public override bool IsMatch(IPrincipal principal, HttpContextBase httpContext)
{

if (!Model.DayOfWeek.HasFlag(DateTime.Today.DayOfWeek)) return false;
// other checks
return true;

1

2

3

Your custom criterion class must evaluate the HTTP context and the data stored in the model to determine if

the criteria is fulfilled or not. The connection between the criterion and model classes is created via

CriterionBase – the base class that must be used for the criterion class – which is a generic class that accepts

ICriterionModel parameters.

The only method you must override is CriterionBase.IsMatch which is the central method for a criterion, it is

the method that will be called when evaluating if a user is a member of a visitor group.

The criterion class must also be decorated with VisitorGroupCriterion attribute, which identifies your class as a

criterion and makes it available for use.

• Category: The name of the group in the criteria picker UI where this criterion will be located. Criteria with

the same Category value will be grouped together.

• DisplayName: A short name that is used to identify the criterion in menus and visitor groups.

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 139

Episerver

Fixing limitations of Episerver Search

Episerver Search will not index blocks in content areas (by default). To fix this yourself:

1. Create an initialization module that listens for the IndexingService.DocumentAdding event:

2. When a document is adding to the index, for example, a ProductPage, get the items in its content

area, and if the item is a TeaserBlock, add its Text to the document in the index:

Customizing Episerver Search

IndexingService.DocumentAdding += IndexingService_DocumentAdding;

using EPiServer.Search.IndexingService;

IEnumerable<IContent> items = product.MainContentArea.FilteredItems
.Select(item => loader.Get<IContent>(item.ContentLink));

doc.Add(new Field("TEASERBLOCK_FIELD", teaser.Text,
Field.Store.NO, Field.Index.ANALYZED));

Or install this package:
https://github.com/jstemerdink/EPi.Libraries.BlockSearch/

Install-Package EPi.Libraries.BlockSearch

Customizing and Extending Episerver Content Cloud

Page 141

Copyright © 2020 Episerver. All rights reserved.

EpiserverEpiserver

Exercises E1 to E4

Customizing the Experience for Visitors

1. Using UIHints to apply display templates

2. Creating a PDF display channel

3. Detecting visitor groups with cookies

4. Adding fields to Episerver Search

Customizing and Extending Episerver Content Cloud

Page 142

Copyright © 2020 Episerver. All rights reserved.

Episerver

Module F

Extending with Plug-ins
and Add-ons

Customizing and Extending Episerver Content Cloud

With Episerver extensions to your site can be installed via NuGet.
This can be anything from a new content type or visitor group

criterion to installing a new version of the UI. As a developer you
need to know what add-ons are and the options available to

package your custom modules.

Customizing and Extending Episerver Content Cloud

Page 147

Copyright © 2020 Episerver. All rights reserved.

Episerver

Module agenda

• Understanding plug-ins and add-ons

• Developing plug-ins and gadgets

• Distributing add-ons

• Example add-ons

Module F – Extending with Plug-ins and Add-ons

• Exercises F1 to F6

• Exercise F1 – Exploring existing add-ons and plug-ins

• Exercise F2 – Creating scheduled job plug-ins

• Exercise F3 – Creating an admin tool plug-in

• Exercise F4 – Creating a report plug-in

• Exercise F5 – Customizing views

• Exercise F6 – Integrating with Tasks in the Navigation pane

Customizing and Extending Episerver Content Cloud

Page 148

Copyright © 2020 Episerver. All rights reserved.

Episerver

Why extend Episerver Content Cloud?

For visitors to the website:

• Develop templates providing the desired web design and functionality to make this possible.

For Episerver Content Cloud users i.e. Editors, Administrators, Marketers, and so on:

• Enhance Episerver CMS through extension points such as plug-ins and gadgets.

• Examples of extensions that help Editors:

• Blog posts automatically created in the correct place in the page tree according to month and

year (it could create the container pages for month and year if they don’t exist)

• A custom property data type that lets the editor select longitude and latitude for a location to use

with Google Maps.

Understanding plug-ins and add-ons

Customizing and Extending Episerver Content Cloud

Page 150

Copyright © 2020 Episerver. All rights reserved.

Episerver

Terms for extension points

Plug-in: an extension that is available to all

CMS users, e.g. scheduled job, custom tool,

report, and so on.

Gadget: an extension that CMS users can

choose to add to their Dashboard or Edit

view panes. Each user has their own

configuration of gadgets.

Add-on: a way to package an extension for

distribution via Episerver’s NuGet feed.

Plug-ins and gadgets do not need to be

packaged as an add-on if you are deploying

internally.

Understanding plug-ins and add-ons

Install-Package EPiServer.Forms –ProjectName AlloyAdvanced

Scheduled job plug-in

Custom tool plug-in

Customizing and Extending Episerver Content Cloud

Page 151

Copyright © 2020 Episerver. All rights reserved.

Episerver

Extending Admin view and Reports with GUI plug-ins

Understanding plug-ins and add-ons

[Authorize(Roles = "CmsAdmins")]
[GuiPlugIn(Area = PlugInArea.AdminMenu, DisplayName = ..., SortIndex = ...)]
public class AppSettingsController : Controller

 obsolete

Customizing and Extending Episerver Content Cloud

Page 152

Copyright © 2020 Episerver. All rights reserved.

Episerver

Extending top menu and Dashboard

Understanding plug-ins and add-ons

Products like Find and Social Reach

Views or features

of a product

Multiple search providers

can be installed

Reserved for Episerver

DashboardRoot

New tab

DashboardDefaultTab

Gadget with any functionality

[Component(Title = "Internal tools", Categories = "dashboard",
AllowedRoles = "CmsAdmins,CmsEditors",
PlugInAreas = PlugInArea.DashboardRoot, SortOrder = 100,
Description = "Cool tools for cool users.")]

public class InternalToolsController : Controller

[Gadget] attribute is deprecated.

Create gadgets with the following classes

Customizing and Extending Episerver Content Cloud

Page 153

Copyright © 2020 Episerver. All rights reserved.

Episerver

Extending Edit view with gadgets

Understanding plug-ins and add-ons

Tab bars and main toolbar

Can be extended but it is not recommended

Settings header

Properties that are frequently used

Asset Pane and Navigation Pane

Information related to content

[Component(Title = "Job Runner", Categories = "cms",
AllowedRoles = "CmsAdmins,CmsEditors",
PlugInAreas = PlugInArea.Navigation, SortOrder = 200,
Description = "Run scheduled jobs in Edit view.")]

public class JobRunnerController : Controller

Customizing and Extending Episerver Content Cloud

Page 154

Copyright © 2020 Episerver. All rights reserved.

Episerver

Understanding views

Views are pluggable and contain panes, groups, and gadgets:

Developing plug-ins and gadgets

E
d

it
 v

ie
w

 R
o

o
t

c
o

n
ta

in
e

r

Navigation pane

Default navigation group

Pages

Sites

TasksRecent gadget

Main edit area

Assets pane

Default assets group

Blocks

Media

FormsForms Elements gadget

Episerver CMS - Edit

View: /episerver/cms/home, Title: EPiServer CMS - Edit, 3/29/2018 10:28:00 AM
Container: EPiServer.Shell.ViewComposition.Containers.BorderContainer, dijit/layout/BorderContainer

Container: EPiServer.Shell.ViewComposition.Containers.PinnablePane, epi/shell/layout/PinnablePane
Container: EPiServer.Shell.ViewComposition.Containers.ComponentPaneContainer, epi/shell/widget/layout/ComponentPaneContainer

Container: EPiServer.Shell.ViewComposition.Containers.ComponentGroup, epi/shell/widget/layout/ComponentTabContainer
Component: EPiServer.Cms.Shell.UI.Components.PageTreeComponent, epi-cms/component/MainNavigationComponent
Component: EPiServer.Cms.Shell.UI.Components.SiteTreeComponent, epi-cms/component/SiteTree
Component: EPiServer.Cms.Shell.UI.Components.Tasks, epi-cms/component/Tasks

Component: EPiServer.Cms.Shell.UI.Components.RecentItems, epi-cms/component/ContextHistory
Container: EPiServer.Shell.ViewComposition.Containers.BorderContainer, dijit/layout/BorderContainer

Container: EPiServer.Shell.ViewComposition.Containers.ContentPane, dijit/layout/ContentPane
Component: EPiServer.Cms.Shell.UI.Components.Toolbar, epi-cms/component/GlobalToolbar

Container: EPiServer.Shell.ViewComposition.Containers.ContentPane, dijit/layout/ContentPane
Component: EPiServer.Cms.Shell.UI.Components.WidgetSwitcher, epi/shell/widget/WidgetSwitcher

Container: EPiServer.Shell.ViewComposition.Containers.PinnablePane, epi/shell/layout/PinnablePane
Container: EPiServer.Shell.ViewComposition.Containers.ComponentPaneContainer, epi/shell/widget/layout/ComponentPaneContainer

Container: EPiServer.Shell.ViewComposition.Containers.ComponentGroup, epi/shell/widget/layout/ComponentTabContainer
Component: EPiServer.Cms.Shell.UI.Components.MediaComponent, epi-cms/component/Media
Component: EPiServer.Cms.Shell.UI.Components.SharedBlocksComponent, epi-cms/component/SharedBlocks

Container: EPiServer.Shell.ViewComposition.Containers.ContentPane, dijit/layout/ContentPane
Component: EPiServer.Cms.Shell.UI.Components.ProjectModeToolbarComponent, epi-cms/project/ProjectModeToolbar

Episerver - Dashboard

View: /episerver/dashboard, Title: EPiServer - Dashboard, 3/29/2018 10:29:41 AM
Container: EPiServer.Shell.ViewComposition.Containers.BorderContainer, dijit/layout/BorderContainer

Container: EPiServer.Shell.ViewComposition.Containers.TabContainer, epi/shell/widget/TabContainer
Container: EPiServer.Shell.ViewComposition.Containers.ComponentContainer, epi/shell/widget/layout/ComponentContainer

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 156

Episerver

Customizing views

You can customize views like the Dashboard and CMS | Edit view.

For example, you might want to pre-populate the Dashboard with the

Google Analytics gadget if a user belongs to the Marketing group, or

remove the SiteTreeComponent for users who don’t need to switch

languages. If you remove all the components from a pane like

Navigation or Assets then the pinnable pane itself will disappear.

Developing plug-ins and gadgets

Component names

PageTreeComponent

SiteTreeComponent

Tasks

RecentItems

Toolbar

SharedBlocksComponent

MediaComponent

ProjectModeToolbarComponent

[ViewTransformer]
public class RemoveComponentsViewTransformer : IViewTransformer

public void TransformView(ICompositeView view, IPrincipal principal)

view.RootContainer.RemoveComponentsRecursive(components,
notifyComponentOnRemoval: false);

Learn more from these articles:

https://world.episerver.com/blogs/Ben-McKernan/Dates/2015/6/modifying-the-default-view-components/

https://www.david-tec.com/2016/05/remove-episerver-ui-components-for-certain-editors/

https://world.episerver.com/blogs/Linus-Ekstrom/Dates/2013/2/Modifying-the-EPiServer-UI-views/

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 157

Episerver

Plug-in manager

Navigate to

CMS | Admin |

Config | Plug-in

Manager

Shows

Episerver CMS

version e.g.

10.9.1.0, and

other shell

modules

deployed as

plug-ins.

Developing plug-ins and gadgets

Customizing and Extending Episerver Content Cloud

Page 158

Copyright © 2020 Episerver. All rights reserved.

Episerver

Episerver front-end style guide

Developing plug-ins and gadgets

The style guide is a living document meant to assist both Episerver and external developers

explore our theme and get an overview of what classes and styles are available.

http://ux.episerver.com/

Customizing and Extending Episerver Content Cloud

Page 159

Copyright © 2020 Episerver. All rights reserved.

Episerver

Distributing plug-ins and gadgets

You can distribute extensions as part of a solution, and they will be automatically detected and

activated in the website:

• All controllers decorated with [Component] or PlugInAttribute-derived types like [GuiPlugIn] and

[ScheduledPlugIn] are loaded at startup from /bin directory.

EPiServer.Shell.ViewComposition namespace

• Gadget related classes, constants and interfaces for GUI components.

EPiServer.PlugIn namespace

• Plug-in related classes, enumerations and interfaces for Admin view and Reports.

You should version client resources to avoid caching problems when upgrading to a new version.

https://world.episerver.com/documentation/developer-guides/CMS/add-ons/Developing-Add-ons/

Developing plug-ins and gadgets

Customizing and Extending Episerver Content Cloud

Page 160

Copyright © 2020 Episerver. All rights reserved.

Episerver

Securing plug-ins and gadgets

• Separate the edit and admin parts

• Remove GUI plug-ins from public-facing servers

• Set access rights on the location paths in config, to

ensure that they cannot be reached by unauthorized

users accessing the page directly

References and examples:

http://world.episerver.com/Blogs/Mari-
Jorgensen/Dates/2010/11/Protect-your-plugins/

http://world.episerver.com/FAQ/Items/Securing-plug-in-files/

Developing plug-ins and gadgets

Customizing and Extending Episerver Content Cloud

Page 161

Copyright © 2020 Episerver. All rights reserved.

How to package add-ons video (90 minutes):

http://fast.wistia.net/embed/iframe/4dhm5342lt?videoFoam=true

Create, update and deploy Nuget Packages with a GUI

https://github.com/NuGetPackageExplorer/NuGetPackageExplorer

Episerver

Understanding add-ons

Distributing add-ons

Add-ons are NuGet packages. They are used to distribute extensions.

Examples: plug-ins, scheduled jobs, gadgets, content types and templates.

Add-ons are deployed into an Episerver website project as shell modules

that use virtual paths to their resources that are stored inside ZIP files.

An Episerver CMS Empty website project includes three shell modules:

• CMS: the CMS user interface, including Admin, Edit, Reports

• EPiServer.Cms.TinyMce: integration with TinyMCE rich text editor

• Shell: the Dashboard and top navigation menu

If you were to install an add-on such as Episerver Forms, you would see

additional shell modules have been deployed:

• EPiServer.Forms and EPiServer.Forms.UI

Customizing and Extending Episerver Content Cloud

Page 163

Copyright © 2020 Episerver. All rights reserved.

Episerver

Add-on levels

Level name Level description Examples

Developer

Site Owner

Verified Solution

Distributing add-ons

Not verified or supported by Episerver.

Requirements

• Open source e.g. on GitHub

• Created by Episerver Certified Developer

Partner and application must pass through an approval process.

Benefits

• Basic testing by Episerver

• One-click installs from the Add-ons store

Co-branded marketing and sales information passed to Episerver

sales representatives globally.

Additional differences

• Use case functionality testing by Episerver

• License fee might apply

• Blob Converter

• PowerSlice

• YouTube Block

• Geta.tags

• SiteAttention

• Mogul SEO

• Translations.com

• ImageVault

• Silverpop

• Agility Multichannel

• Celum

• Perfion

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 164

Episerver

Google Analytics for Episerver

Example add-ons

• Fully integrated, adding insight and context to their content creation process.

• Constantly improve the user journey and customer experience on any type of web, e-commerce,

mobile or social site, based on analytical proof points.

• By bringing analytics data into the content workflow, editors and marketers can make informed

decisions, optimize their online presence in real-time and improve business results.

• It allows marketers to see real-time analytics on the page being worked on.

• Ability to track all relevant information and events related to content, traffic and conversions.

• Predefined analytics best practice guidelines to get the most out of the Episerver platforms.

• Analytics data presented alongside the content being analysed.

• Track the effect of social campaigns on conversions and revenue directly.

• Ability to see the conversions generated from personalization efforts on the site.

https://world.episerver.com/add-ons/google-analytics-for-episerver/

Works with DXC Service Yes

Requires license No

Customizing and Extending Episerver Content Cloud

Page 166

Copyright © 2020 Episerver. All rights reserved.

Episerver

Episerver Social Reach

With Episerver Social Reach you can

set up your social channels and

configure which editors and marketers

can use them.

When an article or product is to be

promoted, create a social message

and decide which social channels you

want to target it to.

Example add-ons

Introducing EPiServer Social Reach
http://world.episerver.com/Articles/Items/Social-Reach-Package/

http://webhelp.episerver.com/latest/addons/socialreach.htm

Works with DXC Service Yes

Requires license No

Customizing and Extending Episerver Content Cloud

Page 167

Copyright © 2020 Episerver. All rights reserved.

Episerver

Episerver Connect for SharePoint

Episerver Connect for SharePoint provides a transparent connection

between Episerver and Microsoft SharePoint.

The connector copies documents, blocks, or other items from

SharePoint document libraries and lists automatically, right in the

familiar asset manager. Editors can drag and drop assets exactly as

you would with any other image, video or document in Episerver.

Updates occur on a scheduled or manual basis and are available to

the CMS as media or blocks, so you always have consistent and

correct material in your online channels.

Developers can use a processor capability to manipulate documents or

blocks as they are being transferred to customize applications to

specific requirements.

Example add-ons

https://world.episerver.com/add-ons/Connect-for-SharePoint/

Works with DXC Service Yes

Requires license No

*Requires SharePoint license.

https://world.episerver.com/add-ons/Connect-for-SharePoint/sharepointprocessor-api/

Episerver Connect for SharePoint in User Guide

http://webhelp.episerver.com/15-5/EN/addons/sharepoint.htm

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 168

Episerver

TechFellow
ScheduledJobOverview

Gives you an easy way to

tell details of the job, which

of them is enabled, which

of them failed last time,

what is the schedule

interval, and so on.

Open source on GitHub so

you can learn how to build

your own Admin view plug-

ins.

Example add-ons

https://github.com/valdisiljuconoks/TechFellow.ScheduledJobOverview/blob/master/README.md

Works with DXC Service Yes

Requires license No

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 169

Episerver

Episerver Community API

User-generated content drives engagement and conversions, and is the most effective way to increase

credibility and loyalty with your customers. Episerver Community API is the high-performance micro-

service that lets you store, manage, moderate and deliver ratings, reviews, comments and groups.

Built on a Data Storage Cluster and Microsoft Azure Service Fabric for robust scalability.

Example add-ons

Comments Moderation Ratings

Activities Groups

http://www.episerver.com/services/cloud-service/episerver-social/

Do not confuse Episerver Community API with:

• Episerver Social Reach: push messages to Facebook, Twitter, etc.

• Episerver UGC: integrate with external social content.

Works with DXC Service Yes

Requires license Yes

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 170

Episerver

Episerver UGC

Episerver UGC enables you to display user-generated content on your

website, commerce site and other channels. Use your best fan content to

turn your website into a highly engaging destination.

• Aggregate, curate and present relevant user-generated content and

personalize the experience on your site.

• Engage and reward users by spotlighting their content through

competitions, interactive maps and visual social galleries.

• Drive engagement and grow your fanbase with call-to-action tiles.

Example add-ons

http://www.episerver.com/products/platform/episerver-ugc/

Works with DXC Service Yes

Requires license Yes

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 171

Episerver

GlobalLink® Localization Suite from translation.com

Example add-ons

http://translations.com/products/globallink-episerver-adaptor
http://www.episerver.com/AddOns/GlobalLink---Translation/
http://world.episerver.com/Articles/Items/Translationscom-Launches-on-Add-On-Store/

Works with DXC Service Yes

Requires license Yes

Customizing and Extending Episerver Content Cloud

Page 172

Copyright © 2020 Episerver. All rights reserved.

Episerver

SEO Manager for Episerver aka SEO Toolkit

SEO Manager optimizes your complete SEO through URL

management, thereby improving your ranking in Google

searches and guiding visitors to your content.

The SEO Manager Add-On optimizes the URL structure of

a site through various operations, such as canonical URLs

and automatic 301 redirects. The user can now rename,

move or even erase pages without harming the

searchability of the site.

Example add-ons

https://www.episerver.com/partners/connectors/add-on-store/SEO-Toolbox/
https://world.episerver.com/add-ons/seo-manager/
https://seotoolbox.net/support/
https://seotoolbox.net/wp-content/uploads/2018/05/SEO_Toolbox_Manual.pdf

Works with DXC Service Yes

Requires license Yes

Consolidate duplicate URLs - Define a canonical page for similar or duplicate pages

”If you have a single page accessible by multiple URLs, or different pages with similar content (for example, a

page with both a mobile and a desktop version), Google sees these as duplicate versions of the same page.

Google will choose one URL as the canonical version and crawl that, and all other URLs will be considered

duplicate URLs and crawled less often. If you don't explicitly tell Google which URL is canonical, Google will

make the choice for you, or might consider them both of equal weight, which might lead to unwanted

behaviour.”

https://support.google.com/webmasters/answer/139066?hl=en

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 173

EpiserverEpiserver

Exercises F1 to F6

Extending with Plug-ins and Add-ons

1. Exploring existing add-ons and plug-ins

2. Creating scheduled job plug-ins

3. Creating an admin tool plug-in

4. Creating a report plug-in

5. Customizing views

6. Integrating with Tasks in the Navigation pane

Customizing and Extending Episerver Content Cloud

Page 174

Copyright © 2020 Episerver. All rights reserved.

Episerver

Module G

Implementing
Episerver Search & Navigation

Customizing and Extending Episerver Content Cloud

Episerver Search & Navigation is an advanced solution with full
capabilities for implementing indexed search for Episerver Content

Cloud, Episerver Commerce Cloud, or custom applications.

Customizing and Extending Episerver Content Cloud

Page 181

Copyright © 2020 Episerver. All rights reserved.

Episerver

Module agenda

• Understanding Episerver Search & Navigation

• Unified search

• Integrating with Episerver Content Cloud

• Optimizing searches

• Exercise G1 – Implementing Episerver

Search & Navigation for Episerver Content

Cloud

Module G – Implementing Episerver Search & Navigation

• Indexing and identifying documents

• Index operations

• Searching for free text

• Filtering

• Paging, sorting, and projecting

• Counting with facets

• Exercise G2 – Exploring Episerver Search &

Navigation APIs

Customizing and Extending Episerver Content Cloud

Page 182

Copyright © 2020 Episerver. All rights reserved.

Episerver

Understanding Episerver Search & Navigation (formerly Find)

Episerver Search & Navigation is based on Elasticsearch, a highly scalable open-source full-text search

and analytics engine. It allows you to store, search, and analyze big volumes of data quickly and in

near real time.

Why use Episerver Search & Navigation?

• Integration with Episerver Content Cloud and Commerce Cloud: it integrates closely with our other

products so as soon as content is published it is immediately indexed and appears in results.

• Admin view: it has an easy-to-use interface to view statistics and optimize results.

• Managed Services: it is a cloud solution fully managed by Episerver experts to keep your indexed

searches running smoothly 24/7/365.

• Friendly .NET API: it has an easy-to-use API that wraps the underlying complexity of the

Elasticsearch REST indexing service.

• Personalized Search: it provides smart machine learning optimized search results.

Understanding Episerver Search & Navigation

Sites that use Episerver Search & Navigation

Arla

http://www.arla.se/

Small Luxury Hotels of the World

http://www.slh.com/

Customizing and Extending Episerver Content Cloud

Page 184

Copyright © 2020 Episerver. All rights reserved.

Decompounding
• cheeseburger → cheese burger

• football → foot ball

• blårutigskjortan→ blå rutig skjorta n (the blue checkered shirt)

• banan → bana n (the trajectory)

• banan → banana

Unstable Episerver Find developer (demo) indexes
Intermittently the free Episerver Find demo indexes can stop working for a short period. This article shows how

you can create Episerver websites that can start up even if its Find index is temporarily unavailable.

https://www.brianweet.com/2018/03/20/unstable-episerver-find-developer-indexes.html

Installing Episerver Find
• Installed through NuGet

• Requires additional license + create an index in cloud service

• Works with Episerver CMS 6 and higher

• Works with Episerver Commerce

• Requires the full .NET framework (not Client Profile)

• Depends on JSON.NET (Newtonsoft.Json.dll)

Episerver

Built-in features of Episerver Search & Navigation

• Multi-language stemming

• Deconstruction of words (e.g. Swedish and Norwegian)

• Related queries

• Highlighted summaries

• Autocomplete and search as you type

• Search in media assets like PDFs and Word documents

• Statistics and search optimization

• Best bets, Custom weighting of results

• Find Connectors to websites and news feeds

Understanding Episerver Search & Navigation

A demo index has the following limitations:

• Maximum 10000 documents

• Maximum 5MB request size

• Maximum 25 queries per second

• The index will be removed after 30 days

Sign up for a free demo index:
https://find.episerver.com/

Episerver Find 13, released April 2018: https://world.episerver.com/documentation/upgrading/episerver-find/find-13/

New language routing: https://world.episerver.com/blogs/Jonas-Bergqvist/Dates/2018/4/find-13-new-language-routing/

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 185

Episerver

Learning more

• Read the documentation: https://world.episerver.com/documentation/developer-guides/find/

• Ask questions in the forums

• Episerver Find: http://world.episerver.com/forum/developer-forum/EPiServer-Search/

• Episerver Personalized Find: https://world.episerver.com/forum/developer-forum/episerver-personalized-find/

• Attend a training course

• Episerver Find for Editors (1 day)
https://www.episerver.com/services/education/courses-for-marketers-editors-and-merchandisers/

• Episerver Find for Developers (1 day)
https://www.episerver.com/services/education/courses-for-developers/

Understanding Episerver Search & Navigation

GDPR guidelines for Episerver Find
https://world.episerver.com/documentation/developer-guides/gdpr-guidelines/the-episerver-platform-and-gdpr/episerver-find/

InspectInIndex
A quick and easy way to inspect Episerver content in an Episerver Find index.

https://github.com/BVNetwork/InspectInIndex/

How to increase the Term Facet Count from default of 10
http://world.episerver.com/forum/developer-forum/EPiServer-Search/Thread-Container/2013/6/Term-facet-

count/

Indexing content in a content area
http://world.episerver.com/documentation/developer-guides/find/Integration/episerver-cms-7-5-with-

updates/Indexing-content-in-a-content-area/

Searching in blocks
http://world.episerver.com/Modules/Forum/Pages/Thread.aspx?id=65052

Customizing and Extending Episerver Content Cloud

Page 186

Copyright © 2020 Episerver. All rights reserved.

Install-Package EPiCode.InspectInIndex

Episerver

Basic searching using Episerver Search & Navigation with Episerver Content Cloud

1. Install NuGet package and configure

2. Code free text search page

3. Execute query and enumerate results

Understanding Episerver Find

private readonly IClient find;

string queryText = "alloy";
UnifiedSearchResults results = find

.UnifiedSearchFor(queryText, Language.English)

.FilterForVisitor()

.GetResults();

using EPiServer.Find;
using EPiServer.Find.UnifiedSearch;

<episerver.find serviceUrl="https://es-eu-api01...net/Plp...GRv"
defaultIndex="episervertraining_index99999" />

Episerver Search &

Navigation cloud

service

Application

Q

u

e

r

y

J

s

o

n

Find client API

Install-Package EPiServer.Find.Cms –ProjectName AlloyAdvanced

Good Practice
<title> and <meta name="description"> needs to be properly filled for Episerver Find to index an external

page correctly. If the meta description is missing, Find will use the nearest <h2> (or <p> tag if <h2> is

missing).

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 187

Episerver

Understanding Unified Search

Episerver Search & Navigation enables two approaches to searching for content:

1. UnifiedSearch() method provides simple search across unified types. Use this to build free text

search pages where visitors need to find all types of content in the website and that don’t require

you to filter on type-specific properties.

2. Search<T>() method finds content of a specific type (or its subtypes). Use this in scenarios such

as content retrieval, navigations, and listings, or when you want to filter on type-specific properties

like the UniqueSellingPoints of a ProductPage.

Search<T>() is a good alternative to IContentLoader when you need to dynamically build navigation

and listings because it is very fast and can search the entire content tree. If you don’t have indexed

search and you need to build multi-level navigation with IContentLoader then you should use recursion

with the GetChildren() method. This will avoid either the GetDescendents() method or the

IPageCriteriaQueryService type that are not cached and always hit the database.

Unified search

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 189

ISearchContent interface defines quite a lot of properties allowing it to cover most scenarios when building

a search page. Most notable are SearchTitle, SearchText and SearchHitUrl as they are typically the

most frequently used when building a search page.

For both PageData and MediaData-derived content types, SearchSection is set to the Name of the ancestor

below the start page and SearchSubSection to the ancestor below the SearchSection page.

The unified search registry can be used to map any property to one of the ISearchContent properties for

inclusion in unified search results.

find.Conventions.UnifiedSearchRegistry
.ForInstanceOf<StandardPage>()
.ProjectTitleFrom(spec => spec.MetaTitle);

Episerver

How does Unified Search work?

Unified Search enables search for all types that implement

ISearchContent.

• Types that do not implement ISearchContent can also be

included by defining projections in a unified search

registry stored in UnifiedSearchRegistry in the

IClient.Conventions namespace.

• Episerver CMS integration adds PageData and MediaData

to the unified search registry by default.

• Search result hits are projected into UnifiedSearchHit

Unified search

Customizing and Extending Episerver Content Cloud

Page 190

Copyright © 2020 Episerver. All rights reserved.

Episerver

Querying with Unified Search

Use the Search<ISearchContent>() method with ISearchContent as the generic type parameter:

Or use the UnifiedSearch() method:

Or use the UnifiedSearchFor() method:

UnifiedSearchFor() will automatically specify a number of fields to search in: SearchTitle,

SearchSummary, SearchText and SearchAttachment.

Unified search

string q = "alloy meet";

UnifiedSearchResults results = find.Search<ISearchContent>().For(q).GetResult();

UnifiedSearchResults results = find.UnifiedSearch().For(q).GetResult();

UnifiedSearchResults results = find.UnifiedSearchFor(q).GetResult();

using EPiServer.Find.UnifiedSearch; // UnifiedSearchResults, ISearchContent, UnifiedSearchFor

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 191

Episerver

Searching for CMS content

With Episerver CMS integration, the extension method

GetContentResult() is available if the search type T implements

IContent (so it doesn’t work with unified search):

1. It constructs a JSON query and submits it to Episerver Find…

2. …and receives a JSON document with search results.

3. It uses the content references in the search results to…

4. …load content from the object cache or CMS database.

Integrating with Episerver CMS

IContentResult<IContent> results = find
.Search<IContent>()
.For(q)
.GetContentResult(); // only for IContent type queries

Episerver Find

Episerver CMS

1
2

Data access layer

4
3

Episerver DB

Content

Reference(s)
Cached

result

Json

result

Find client API

using EPiServer.Find.Cms; // IContentResult, GetContentResult()

string q = "alloy";

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 193

Episerver

Building searches with extension methods

IClient.Search<T>() returns ITypeSearch<T>

TypeSearchExtensions adds extension methods to

ITypeSearch<T> like:

Integrating with Episerver CMS

• Filter<T>(filter)

• For<T>("free text")

• Select<T>(projection)

• OrderBy<T>() and ThenBy<T>()

For<T>("free text") returns IQueriedSearch<T>

QueryStringSearchExtensions adds extension methods to

IQueriedSearch<T> like InField() and UsingSynonyms()

using EPiServer.Find; // type and query string extension methods

Be careful to check what type is returned from an extension method, for example, ITypeSearch<T> or

IQueriedSearch<T>. Some do not have some extension methods so you must call the extension methods in

the correct order. For example:

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 194

IContentResult<StandardPage> results = find
.Search<StandardPage>() // returns ITypeSearch<StandardPage>
.For("alloy") // returns IQueriedSearch<T>
.UsingSynonyms() // only available on IQueriedSearch<T>
.Filter(// available on ITypeSearch<T>

page => page.RolesWithReadAccess().Match("Everyone"))
.Track() // available on ITypeSearch<T>
.ApplyBestBets() // available on ITypeSearch<T>
.GetContentResult(); // only available on ITypeSearch<IContent>

Episerver

Filtering results with Episerver CMS content search extensions

By default, the search will not filter on Read access rights and it looks

in the whole site’s content tree, but only for the current site.

There are extension methods available for easily filtering for common

scenarios like excluding container pages and to remove content that

the visitor should not see.

The behavior of Episerver Find changed in version 9 and later to

automatically filter by site by calling FilterOnCurrentSite() by default.

To change this behavior, you must create an initialization module and

modify the unified search registry (see Notes for complete code):

Integrating with Episerver CMS

using EPiServer.Find.Cms; // ContentSearchExtensions

registry.Add<PageData>().PublicSearchFilter((IClient c, ISearchContext ctx) => c.BuildFilter<IContentData>()
.FilterForVisitor(ctx.ContentLanguage == null || ctx.ContentLanguage == Language.None ?

Languages.AllLanguagesSuffix : ctx.ContentLanguage.FieldSuffix)
.ExcludeContainerPages().ExcludeContentFolders()
// .FilterOnCurrentSite() // this is what the default behavior does

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 195

using EPiServer.Core;
using EPiServer.Find;
using EPiServer.Find.Cms;
using EPiServer.Find.Framework;
using EPiServer.Find.UnifiedSearch;
using EPiServer.Framework;
using EPiServer.Framework.Initialization;

namespace AlloyAdvanced.Business.Initialization
{

[InitializableModule]
[ModuleDependency(typeof(EPiServer.Find.Cms.Module.IndexingModule))]
public class MultisiteFindInitializationModule : IInitializableModule
{

public void Initialize(InitializationEngine context)
{

var setup = new CmsUnifiedSearchSetUp();
IUnifiedSearchRegistry registry = SearchClient.Instance.Conventions.UnifiedSearchRegistry;

registry.Add<PageData>()
.PublicSearchFilter((IClient c, ISearchContext ctx) => c.BuildFilter<IContentData>()

.FilterForVisitor(
ctx.ContentLanguage == null || ctx.ContentLanguage == Language.None ?
Languages.AllLanguagesSuffix : ctx.ContentLanguage.FieldSuffix)

.ExcludeContainerPages()

.ExcludeContentFolders()
// .FilterOnCurrentSite() // this is what the default behavior does
)

.CustomizeIndexProjection(setup.CustomizeIndexProjectionForPageData)

.CustomizeProjection(setup.CustomizeProjectionForPageData);

registry.Add<MediaData>()
.PublicSearchFilter((c, ctx) => c.BuildFilter<IContentData>()

.FilterForVisitor(
ctx.ContentLanguage == null || ctx.ContentLanguage == Language.None ?
Languages.AllLanguagesSuffix : ctx.ContentLanguage.FieldSuffix)

.ExcludeContentFolders())
.CustomizeIndexProjection(setup.CustomizeIndexProjectionForMediaData)
.CustomizeProjection(setup.CustomizeProjectionForMediaData);

}

public void Uninitialize(InitializationEngine context) { }
}

}

Episerver

Filtering results with Episerver CMS content extensions

For more control, you can include filters implemented as IContent extension methods like

RolesWithReadAccess() and UsersWithReadAccess()

You can filter by a starting point in the content tree or that has a version status:

Integrating with Episerver CMS

IContentResult<StandardPage> results = find.Search<StandardPage>().For("secret")
.Filter(page => page.RolesWithReadAccess().Match("Everyone"))
.GetContentResult();

.Filter(page => page.UsersWithReadAccess().Match("Alice"))

.Filter(page => page.Ancestors().Match(ContentReference.StartPage.ToString())

.Filter(page => page.Status().Match(VersionStatus.AwaitingApproval)

using EPiServer.Find.Cms; // ContentExtensions

After importing the EPiServer.Find.Cms namespace, an extension

method named Ancestors() is included when indexing IContent
(pages, shared blocks, and so on).

The Ancestors() method returns a list containing the string

representation of the ContentLink property of each of the indexed

contents ancestors in the content tree. This can be used to filter for

content located below a certain node in the content tree.

Episerver Find will automatically index all sites in a multi-site setup and

you can filter the results per-site so that you will by default only get

results for the site you are currently browsing.

Customizing and Extending Episerver Content Cloud

Page 196

Copyright © 2020 Episerver. All rights reserved.

Episerver

Outputing results

Search results implement IContentResult<T> which implements IHasFacetResults and

IEnumerable<T> so results can be looped over and it has properties like Facets and TotalMatching.

Integrating with Episerver CMS

int matches = results.TotalMatching;
foreach (StandardPage page in results)
{

FacetResults facets = results.Facets;
foreach (Facet facet in facets)
{

string name = facet.Name;

Customizing and Extending Episerver Content Cloud

Page 197

Copyright © 2020 Episerver. All rights reserved.

IContentResult<StandardPage> results = find.Search<StandardPage>()
.For("about")
.Filter(page => page.RolesWithReadAccess().Match("Everyone"))
.GetContentResult();

SearchInfo info = results.SearchResult.ProcessingInfo;

Indexing Block's Content to make it searchable

By default, the content of a block (that is added to ContentArea on a page) is not indexed and therefore you

can’t search for the content of that block instance in your site.

To index a particular block type, create a class and inherit it with interface

IShouldIndexInContentAreaConvention:

public class ShouldIndexInContentAreaConvention : IShouldIndexInContentAreaConvention
{

public bool? ShouldIndexInContentArea(IContent content)
{

return content is CopyBlock;
}

}

https://world.episerver.com/blogs/pjangid/dates/2019/4/indexing-blocks-content-to-make-it-searchable/

Episerver

Indexing content in content areas

While content in a content area is not indexed by default as part of the container content, techniques

are available to enable that. Use one of the following techniques to index, for example, a block

type content, inside a content area:

1. Decorate the content type with the [IndexInContentAreas] attribute. All instances of the content

type that are referenced in any content area are indexed as a part of the container content.

2. Define a bool property for the content type named IndexInContentAreas. Editors can set its value

to true for an instance of that content type and when added to a content area it will be indexed as

part of the container content.

3. Change the IContentIndexerConventions.ShouldIndexInContentAreaConvention property.

Integrating with Episerver CMS

[EPiServer.Find.Cms.IndexInContentAreas]
public class EditorialBlock : SiteBlockData

public class EditorialBlock : SiteBlockData
{

public virtual bool IndexInContentAreas { get; set; }

Customizing and Extending Episerver Content Cloud

Page 198

Copyright © 2020 Episerver. All rights reserved.

Episerver

Disabling indexing of content

199

The Alloy (MVC) project template includes a

property to disable a page from being indexed

but it is not implemented!

For external search engines, you could add the

following code to the shared layout <head>:

Integrating with Episerver CMS

ContentIndexer.Instance.Conventions.ForInstancesOf<SearchPage>()
.ShouldIndex(x => false);

@if (Model.CurrentPage.DisableIndexing)
{
<meta name="robots" content="noindex" />

}

To disable indexing in Episerver Find, configure Find conventions in an initialization module:

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 199

Episerver

Tracking statistics and enabling optimizations

You can track searches and collect statistical data about them. If you

enable the feature, it tracks searches by frequency, phrases, and

number of hits. The aggregated statistics can enable functionality to

enhance searches: autocomplete, related queries, and spell checks.

• Only call Track() for external visitors, not internal employees, and

only if the Do Not Track (DNT) HTTP header is off or missing.

All optimizations are disabled by default. Call extension methods to

enable each feature for a query:

• To enable best bets: ApplyBestBets()

• To enable synonyms: UsingSynonyms()

• How to automate the registration of common English synonyms:
https://github.com/sondn2010/EnglishSynonymsCreator

Optimizing and personalizing

using EPiServer.Find.Framework.Statistics; // Track()

using EPiServer.Find; // ApplyBestBets(), UsingSynonyms()

After importing EPiServer.Find the extension methods of QueryStringSearchExtensions are available

to IQueriedSearch<T> queries, as returned by the For() free-text extension method:

To get the statistics client in order to get related queries and so on, import the

EPiServer.Find.Framework.Statistics and EPiServer.Find.Statistics namespaces:

Customizing and Extending Episerver Content Cloud

Page 201

Copyright © 2020 Episerver. All rights reserved.

IStatisticsClient stats = find.Statistics(); // EPiServer.Find.Statistics

DidYouMeanResult relatedQueries = stats
.DidYouMean(query: "alloy", size: 1); // EPiServer.Find.Framework.Statistics

AutocompleteResult suggestion = stats
.Autocomplete(prefix: "alloy", size: 1);

SpellcheckResult spellings = stats
.Spellcheck(query: "alloy", size: 3);

Episerver

Personalizing Find

How do you make your Find search results personalized? Two method calls:

Optimizing and personalizing

public ActionResult Index(SearchPage currentPage, string q)
{

var result = client.Search<IContent>()
.For(q)
.UsingPersonalization() // (2) personalize query with visitor information
.FilterForVisitor()
.GetContentResult();

public SearchPageController(IClient client)
{

this.client = client;
client.Personalization().Refresh(); // (1) fetch visitor information

private readonly IClient client;

using EPiServer.Find.Personalization;

Currently, Personalized Find only works with Episerver Commerce.

Customizing and Extending Episerver Content Cloud

Page 202

Copyright © 2020 Episerver. All rights reserved.

EpiserverEpiserver

Exercise G1

Implementing Episerver Search &
Navigation with Episerver CMS

Estimated time: 30 minutes

Prerequisites: Exercise A1

In this exercise, you will:

• Configure an Episerver Find index for use with

the AlloyAdvanced website.

• Implement searching functionality using

Episerver Find.

• Include optimizations like Best Bets.

• Implement the Powerslice add-on to provide

advanced search capabilities for CMS Editors.

Customizing and Extending Episerver Content Cloud

Page 203

Copyright © 2020 Episerver. All rights reserved.

Episerver

How to create an IClient in any .NET application

Choose one of the following:

• Pass parameters to the Client constructor

• Load from the configuration file

• In an Episerver website, get

client as a dependency service

(see Notes section)

Indexing and identifying documents

IClient client = new Client(serviceUrl: "https://es-eu-api01.episerver.net/Plp...GRv",
defaultIndex: "episervertraining_index99999", defaultRequestTimeout: 10);

<episerver.find
serviceUrl="https://es-eu-api01.episerver.net/Plp...GRv"
defaultIndex="episervertraining_index99999" />

IClient client = Client.CreateFromConfig();

using EPiServer.Find; // IClient, Client

Do not use CreateFromConfig() in an Episerver website project because

it does not add PageData and MediaData to the unified search registry.

Use constructor parameter injection or SearchClient.Instance

In an Episerver website project, use constructor parameter injection to get IClient so that PageData and

MediaData are added to the unified search registry, as shown in the following screenshot:

Customizing and Extending Episerver Content Cloud

Page 205

Copyright © 2020 Episerver. All rights reserved.

Episerver

Identifying indexed documents

Every document indexed in Episerver Find is identified by two parts:

• Type: a string that represents the type of the document, e.g.

"AlloyAdvanced_Models_Pages_StartPage" or "FindConsole_Book"

• Id: a value equivalent to a string of up to about 100 characters without spaces.

DocumentId has implicit operators that automatically convert from the following .NET types:

• int, Guid, long, DateTime, float, double, and string:

Indexing and identifying documents

DocumentId a = 1;
DocumentId b = Guid.NewGuid();
DocumentId c = DateTime.Now;
DocumentId d = "hello_world";

using EPiServer.Find.Api.Ids; // DocumentId

Customizing and Extending Episerver Content Cloud

Page 206

Copyright © 2020 Episerver. All rights reserved.

Episerver

What property is used for the Id?

If Episerver Find does not know which property of a

type should be used (for example, it does not

assume one named Id), it will generate a GUID for

the Id you can get from the IndexResult return value.

Indexing and identifying documents

var book = new Book
{

BookID = 1,
Title = "Lord of the Rings",
Author = "J. R. R. Tolkien"

};
IndexResult result = client.Index(book);

namespace FindConsole
{
public class Book
{
public int BookID { get; set; }
public string Title { get; set; }
public string Description { get; set; }
public string Author { get; set; }

}
}

WriteLine($"OK: {result.Ok}, Type: {result.Type}, Id: {result.Id}]");
// => OK: True, Type: FindConsole_Book, Id: vhMDMCUjQG2E-uxlwvfJuw

using EPiServer.Find.Api; // IndexResult

Indexing is done using the client’s Index() method. Any .NET/CLR object can be indexed as long as it can be

serialized to JSON.

It’s possible to index several objects at the same time using overloads of the Index method which has

IEnumerable<object> or params object[] as parameters.

Customizing and Extending Episerver Content Cloud

Page 207

Copyright © 2020 Episerver. All rights reserved.

BulkResult Index(IEnumerable objectsToIndex);
IndexResult Index(object objectToIndex, Action<IndexCommand> commandAction);
IndexResult Index(object objectToIndex);

Episerver

How to control the property used for the Id

Choose one of the following:

1. Apply [Id] to the property you want to use.

2. Define a convention for instances of the

type to specify what the document Id is.

3. Set the command’s Id when calling Index().

Indexing and identifying documents

var book = new Book {
BookID = 1,
Title = "Lord of the Rings",
Author = "J. R. R. Tolkien"

};
IndexResult result = client.Index(book, command => { command.Id = book.BookID; });
WriteLine($"OK: {result.Ok}, Type: {result.Type}, Id: {result.Id}]");
// => OK: True, Type: FindConsole_Book, Id: 1

namespace FindConsole
{
public class Book
{
[Id] public int BookID { get; set; }
public string Title { get; set; }
public string Description { get; set; }
public string Author { get; set; }

}
}

client.Conventions
.ForInstancesOf<Book>()
.IdIs(b => b.BookID);

using EPiServer.Find.ClientConventions; // ForInstancesOf<T>(), IdIs()

using EPiServer.Find; // [Id]

1

2

3

Controlling the indexing operation

When calling the Index() method, you can pass a command lambda that controls:

• If the service waits for the index to refresh before returning the index result.

• How long the document will remain in the index.

• Which property is used for the Id.

Customizing and Extending Episerver Content Cloud

Page 208

Copyright © 2020 Episerver. All rights reserved.

IndexResult result = client.Index(book, command =>
{

command.Refresh = true; // so it appears in results immediately
command.TimeToLive = TimeSpan.FromMinutes(30); // auto-delete after 30 minutes
command.Id = book.BookID; // manually set the Id for the document

});

Episerver

Getting or deleting a document from the index

Once an object has been indexed it’s retrievable using the Get<T>() method.

• To get, you must specify the type of document to retrieve and its Id:

• To delete, you must specify the type of document to remove and its Id:

• To delete all documents, you could write an extension method like this:

Index operations

Book book = client.Get<Book>(42);

DeleteResult resultOfDeleting = client.Delete<Book>(42);

public static void ClearIndex(this IClient client)
{

client.Delete<object>(x => x.ToString().Exists() | !x.ToString().Exists());
}

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 210

DeleteResult Delete(Type type, DocumentId id, Action<DeleteCommand> commandAction);
DeleteResult Delete<T>(DocumentId id);
DeleteResult Delete<T>(DocumentId id, Action<DeleteCommand> commandAction);

IEnumerable<GetResult<TSource>> Get<TSource>(IEnumerable<DocumentId> ids);
TSource Get<TSource>(DocumentId id, Action<GetCommand<TSource>> commandAction);
TSource Get<TSource>(DocumentId id);

Episerver

Updating a document in the index

Choose one of the following:

• To perform a replacement, i.e. HTTP PUT

• Get<T>(): retrieve an existing document

• Modify its properties

• Index(): re-index the document

• To perform a more efficient update, i.e. HTTP PATCH

• Update<T>(): create an update command

for an existing document

• Specify the field to be updated

• Execute() the update command

Index operations

Book book = client.Get<Book>(1);
book.Title = "new title";
IndexResult result = client.Index(book,
x => x.Refresh = true); // optional

ITypeUpdate<Book> updater =
client.Update<Book>(1);

ITypeUpdated<Book> command =
updater.Field(b => b.Title, "new title");

IndexResult result = command.Execute();

Enable the Refresh command to make the service

wait for the index to update before returning.

Without this, if you search immediately then you

might not get the results you expect.

Objects which have been indexed can be updated by indexing them again. The index method does not

differentiate between adding new objects or updating existing ones. If an document with the same ID exists in

the index it will be overwritten, otherwise a new document will be added.

A more efficient method to update a single property is to create an updater as shown in the second example.

Customizing and Extending Episerver Content Cloud

Page 211

Copyright © 2020 Episerver. All rights reserved.

The Hits property on the SearchResults<T> contains SearchHit objects.

A SearchHit contains the Document, the Score, and Highlights. Results are automatically sorted with

the highest scoring document first.

Episerver

Searching for documents in the index

Use the Search<T>() method to return a search query that can be further configured. Its type

parameter T specifies what types to search for. The search query implements ITypeSearch<T>.

If no criteria is added, the query will search for all objects of the specified type, including subtypes, so

if you specific System.Object it would return everything!

GetResult() method executes the query by sending it to the server and returning the results. No

communication with the server happens prior to the GetResult() call.

Index operations

ITypeSearch<Book> queryBooks = client.Search<Book>(); // returns Book documents and subtypes
ITypeSearch<object> queryAll = client.Search<object>(); // returns all documents

SearchResults<Book> results = queryBooks.GetResult(); Only the first ten matches are returned

by default. Use TotalMatching property

to show the total number of matches.

Customizing and Extending Episerver Content Cloud

Page 212

Copyright © 2020 Episerver. All rights reserved.

Episerver

Full-text searching

A full-text (aka free-text) query can be added to a type search using the For() method.

In this example code, books with any of the words: “the”, “lord”, “of”, or “rings”, in any of their indexed

properties, will be matched and returned when the query is executed:

By default any of the words will be included, i.e. the query uses OR between the words. To restrict the

query to only return matches that contain all the words, i.e. the query uses AND between the words:

Searching for full-text

IQueriedSearch<Book> queryBooks = client
.Search<Book>() // Book documents and subtypes...
.For("The Lord of the Rings"); // ...that contain any of the words

.WithAndAsDefaultOperator(); // ...that contain all of the words

Full-text/full text/fulltext search:
https://en.wikipedia.org/wiki/Full-text_search

When using the For() method each word in the string passed will by default be ORed. Meaning that a string

with two words will be interpreted as <word1> OR <word2>. Applied to the above example this means that the

query would match a book titled “Lord of the Flies” as it contains the word “lord”.

This is often the desired behavior as a book titled “The Lord of the Rings” would get a higher score and

therefore be placed before “Lord of the Flies” in the results. However, in some cases we may want to limit the

search results to such that match all keywords in the query.

We can then use the WithAndAsDefaultOperator() method. For a string with two words passed as

argument to the For() method will then be interpreted as <word1> AND <word2>.

Recently, Episerver changed the configuration of the indexes to remove all registered stop words, so “of” and

“the” are treated the same as “lord” and “rings”.

If you use the MoreLikeThis() extension method then you can supply a StopWords property with a list of

words, but for general queries, remove the stop words using a regular expression before running the query.

But explicitly Track() using the original query text.

https://world.episerver.com/forum/developer-forum/EPiServer-Search/Thread-

Container/2017/10/removing-extra-results-that-use-grammatical-article-words/

https://world.episerver.com/forum/developer-forum/Feature-requests/Thread-Container/2017/1/be-able-to-

filter-out-stopwords-for-all-search-not-only-morelike/

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 214

Episerver

Specifying which properties to search

Use the InField() method to specify that the full-text query should only look in a one property:

Several properties can be specified by either invoking the InField() method multiple times…

…or by using the InFields() method:

Other methods include: AndInField(), InAllField()

Searching for full-text

IQueriedSearch<Book> queryBooks = client.Search<Book>()
.For("The Lord of the Rings")
.InField(book => book.Title);

IQueriedSearch<Book> queryBooks = client.Search<Book>()
.For("The Lord of the Rings")
.InField(book => book.Title)
.InField(book => book.Author);

.InFields(book => book.Title, book => book.Author);

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 215

Episerver

Language stemming

Language stemming matches based on a word stem, for example, the lemma stem of the English

words paying, paid, and pays, would be pay. The prefix stem of fishing, fishes, fisked would be fis.

Stemming is language dependent, so (1) you must tell the query the language you want to search for,

and (2) you must tell the query which properties to look in.

It’s not possible to search using stemming in InAllField() but you can look for exact matches on the

original query text as above.

Searching for full-text

IQueriedSearch<Book> queryBooks = client
.Search<Book>(Language.English) // (1) must specify a language
.For("paying") // calculates the stem word: "pay"
.InField(book => book.Title) // (2) must specify which properties to look in
.InField(book => book.Author) // for matches on variations of stem word "pay"
.InAllField(); // can also search for "paying" in all properties

Lemma stems are more advanced than prefix stems

because they understand the grammar of the

language. Prefix stems sometimes over- or under-stem

depending on the sophistication of the algorithm.

Understanding stemming
http://www.elastic.co/guide/en/elasticsearch/guide/current/stemming.html

Lemmatization
A lemma is the canonical, or dictionary, form of a set of related words—the lemma of paying, paid, and pays is

pay. Usually the lemma resembles the words it is related to but sometimes it doesn’t — the lemma of is, was,

am, and being is be.

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 216

Episerver

Understanding filtering

Search<T> returns an ITypeSearch<T> that has some overloaded Filter() extension methods.

• You can pass either a Filter object built with FilterBuilder<T>:

• Or pass a lambda expression that calls extension methods (see Notes) to build the filter:

Filtering

public static ITypeSearch<TSource> Filter<TSource>(this ITypeSearch<TSource> search,
Filter filter);

public static ITypeSearch<TSource> Filter<TSource, T>(this ITypeSearch<TSource> search,
Expression<Func<T, Filter>> filterExpression);

FilterBuilder<Book> builder = client.BuildFilter<Book>();

ITypeSearch<Book> filteredBooks = client
.Search<Book>()
.Filter(book => book.Author.Match("Michael Wolff"));

The Match() extension method has

22 overloads for all the simple data

types like string, bool, and int.

When we want to find only documents that matches a

specific condition we can use filters. As opposed to full-

text queries, filters either match completely or not at all.

That is, while full-text queries (and other types of queries)

rank documents by score where one document can match

the query a lot and another just a little and both are

returned, filter does not produce or affect scoring.

The Filter method is quite similar to the Where method in

LINQ. It does however have a slightly different syntax as it

requires an expression that returns a Filter object instead

of a Boolean value. When using the Filter method we

typically use the Match method in the filter expression to

match a value exactly, or for lists of objects implementing

IEnumerable, to match require one of the objects in the

list to match a value.

As filter expressions are not executed “as-is” but parsed

and sent over to the search engine we generally don’t

have to do null-checks like we would with in-memory LINQ

queries. For instance, with an expression such as x =>

x.Author.Prefix(“A”) it doesn’t matter if the Author property

has a value or not.

It’s possible to extend Finds filtering API by creating

custom filter methods. For instance, if we often use x =>

x.Author.Prefix(“A”) we could create a method that allows

us to instead write x => x.AuthorNameStartsWithA().

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 218

Episerver

Common filtering extension methods

Property data type Lambda expression examples

Filtering

.Filter(book => lambda expression);

// all data types have Exists()
book.Author.Exists()
book.PageCount.Exists()
book.Released.Exists()
book.IsInStock.Exists()

*Includes nullable number types

book.Author.Match("Michael Wolff")
book.Author.MatchCaseInsensitive("michael WOLFF")
book.Author.MatchFuzzy("mick woof")
book.Author.In(new string[] { "Michael Wolff", "James Comey" }, ignoreCase: true)
book.Author.Prefix("Mic")
book.Author.PrefixCaseInsensitive("mic")
book.Author.AnyWordBeginsWith("Mic")

string

book.PageCount.Match(200)
book.PageCount.GreaterThan(200) // all numbers and dates have GreaterThan()
book.PageCount.LessThan(200) // all numbers and dates have LessThan()
book.PageCount.InRange(300, 400) // all numbers and dates have InRange()

int, long,

float, double,

decimal*

book.Released.Match(DateTime.Parse("25 December 2017"))
book.Released.Before(DateTime.Parse("25 December 2017"))
book.Released.After(DateTime.Parse("25 December 2017"))

DateTime,
DateTime?

Filtering string properties

String properties can be filtered in a number of ways. For exact matching we can use the Match method and

for the equivalent of String.StartsWith we can use the Prefix method. Both methods are case sensitive but

have corresponding methods for case insensitive filtering.

The Exists method matches properties which have any value.

NOTE: The AnyWordBeginsWith method while powerful isn’t optimal in terms of performance when used for

large strings. It’s therefore best to limit its usage to short string fields such as titles, names, tags and the like.

Filtering numbers and date/time values

Numerical values such as integers, doubles, floats, longs, and DateTime values as well as their nullable

equivalents can be matched by equality using the Match method and for existence using the Exists method.

It’s also possible to require that a value is within a certain range using the InRange method.

Filtering other data types

• Booleans

• Enum

• Type

• Nested fields

• Collections

• Complex objects

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 219

Property data type Lambda expression for filter examples

bool book.IsInStock.Match(true)

IEnumerable<string>
IEnumerable<int>

book.Authors.Count(2)
book.Authors.In("Michael Wolff")

Episerver

Building complex filters

Sometimes, especially when reacting to user input, a filter has to be dynamically composed. A filter

builder can be used to construct a filter which can later be added to a search query.

1. Create a filter builder:

2. Combine some filters:

3. Pass the builder to the Filter() method:

Filtering

FilterBuilder<Book> builder = client.BuildFilter<Book>();

builder.And(book => book.Author.MatchCaseInsensitive("suzanne collins"));
builder.And(book => book.Title.PrefixCaseInsensitive("the hun"));
builder.Or(book => book.BookID.GreaterThan(1001));

var filteredBooksQuery = client.Search<Book>().Filter(book => builder);

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 220

Episerver

Paging and sorting

To display pages of search results, use the Skip() and Take() methods:

To sort the search results, use the OrderBy(), OrderByDescending(), ThenBy(), and

ThenByDescending() methods:

Paging, sorting, and projecting

int pageSize = 25;
int pageIndex = 3; // starts at 0, so fourth page of results

ITypeSearch<Book> pagedBooks = client
.Search<Book>()
.Skip(pageSize * pageIndex)
.Take(pageSize); // default is 10, maximum is 1000

.OrderBy(book => book.Author)

.ThenByDescending(book => book.Price);
Always sort if you filter.

Paging

The Skip() method bypasses the first n hits that match a search query while the Take() method instructs

the search engine to return n number of hits. They are used together when presenting search results and

listings with paging. Take() is also often used alone when we’re only interested in a limited number of hits.

As opposed to LINQ and most database querying solutions, Find defaults to the equivalent of Take(10). If you

don’t specify the number of hits to return using Take() then you only get the first 10 hits. Also note that

Take() will throw an exception if we pass it a value larger than 1000. To get all results you must use paging.

Sorting

For sorting, use OrderBy() and OrderByDescending(). There are also ThenBy() and

ThenByDescending() methods which are simply aliases for the two former methods and are only used to

make the code more easily readable.

Sorting null values

OrderBy() orders null values last while OrderByDescending() orders them first. This default behavior can

be changed by supplying a second argument of type SortMissing.

As the sorting is done on the server it’s safe to sort on fields that could potentially be null. For instance

.OrderBy(x => x.A.B.C) won’t cause an exception if either A, B or C are null. Note however that sorting

on fields that have never been created can raise exceptions from the search engine. That is, while A may be

null in the example, at least one object should have had a non-null value for A.

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 222

.OrderBy(book => book.Author, SortMissing.First)

Episerver

Projecting

To minimize the amount of data returned from the service, you can use projection:

You can use the AsCropped() method on string properties to limit the amount of text returned:

Paging, sorting, and projecting

var projectedBooks = client // must use var because the projected type is anonymous
.Search<Book>()
.Select(book => new
{

ID = book.BookID, // renaming a property in the anonymous type
book.Summary, // reusing the original property name

.Select(book => new
{

ID = book.BookID,
Excerpt = book.Summary.AsCropped(100) // must name the new property when cropping

There are three reasons why we’d use projections:

1. Only the required fields need to be transferred from the search engine server resulting in a smaller

response.

2. We can make the result object contain a list of objects tailored for our needs, such as data needed for

presentation in a search results listing.

3. Some types may be hard to deserialize from JSON and by using a projection we can work around that. For

instance, while Find’s Episerver CMS integration enables indexing PageData objects it does not allow

deserializing them.

It’s possible to use a couple of special methods in projection expressions. One such is the AsCropped method

which is an extension method for strings. When using this method only the first n characters of the string will

be returned from the search engine. The search engine will do it’s best to crop at the end of a word.

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 223

Episerver

Understanding facets

Facets are counts and other aggregations that can be

included with search results. For example:

• Numbers of books by format or price range.

• Numbers of cameras by price range, customer

rating, sensor format, or brand.

• Numbers of stores 1 km, 2 km, and 5 km from a

geographic location.

• Numbers of pages by category.

• Numbers of news articles per month.

Facets are often combined with filters to limit the

search results by the values or ranges of the facets.

Counting with facets

https://www.wexphotovideo.com/https://www.easons.com/

Episerver Find features several facets ranging from simple to

advanced, such as Terms, Range, Statistical and Geo Distance.

https://world.episerver.com/documentation/developer-

guides/find/NET-Client-API/searching/Facets/

Customizing and Extending Episerver Content Cloud

Page 225

Copyright © 2020 Episerver. All rights reserved.

Episerver

Counting with term facets

Defining a term facet:

Getting the terms and counts:

Outputting the terms and counts:

Counting with facets

ITypeSearch<Book> query = client.Search<Book>()
.TermsFacetFor(book => book.Author, // the term

command => command.Size = 50); // default is 10

// execute the query without getting the search results
var resultsForTerms = query.Take(0).GetResult();

// get the terms from the results
var terms = resultsForTerms

.TermsFacetFor(book => book.Author).Terms;

// output each term and its count
foreach (TermCount term in terms)
{

WriteLine($"{term.Term} ({term.Count})");

Perhaps the most common type of facets is terms facets. Terms facets provide a grouping of a specific field

within the documents that match a search request. This is typically used to display a list of categories, tags,

department names etc. We pass TermsFacetFor an expression to specify what field we want a facet for. The

search result will contain a terms facet in addition to the regular search hits. It’s possible to customize to

request for the facet by passing a second argument to the TermsFacetFor method. By doing so we can specify

that the facet should contain more than 10 items: .TermsFacetFor(x => x.Author, x => x.Size = 50)

As it’s possible to request multiple terms facets within the same search request we must again pass an

expression specifying what field the facet is for. The returned object from TermsFacetFor implements

IEnumerable<TermCount>. TermCount objects have a Term property, containing the value in the field, and a

Count property, containing the number of documents that has that specific value.

https://world.episerver.com/documentation/developer-guides/find/NET-Client-API/searching/Facets/Terms-

facets/

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 226

Episerver

Counting with histogram facets

Defining a histogram facet:

Getting the entries and counts:

Outputting the entries and counts:

Counting with facets

ITypeSearch<Book> books = client.Search<Book>()
.HistogramFacetFor(book => book.Published,

DateInterval.Year);

// execute the query without getting the search results
var resultsForFacets = books.Take(0).GetResult();

// get the facets from the results
var histogram = resultsForFacets

.HistogramFacetFor(book => book.Published).Entries;

// output each entry in histogram and its count
foreach (var entry in histogram)
{

WriteLine($"{entry.Key.Year} ({entry.Count})");

Use histogram facets with numerical and date fields to retrieve the number of documents whose field value

falls within an interval. For example, in a search of products, use a histogram facet to retrieve the number of

products whose price ranges from 0 to 100, 101 to 200, and so on.

https://world.episerver.com/documentation/developer-guides/find/NET-Client-

API/searching/Facets/Histogram-facets/

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 227

Episerver

Counting with range facets

Defining a range facet:

Getting the ranges:

Outputting the ranges,

counts, and averages:

Counting with facets

// execute the query without getting the results
var resultsForFacets = books.Take(0).GetResult();

// get the facets from the results
var ranges = resultsForFacets

.RangeFacetFor(book => book.PageCount).Ranges;

var pageCountRanges = new NumericRange[]
{

new NumericRange { To = 300 },
new NumericRange { From = 300, To = 750 },
new NumericRange { From = 500, To = 1000 },
new NumericRange { From = 1000 }

};

// output each entry in histogram and its count
foreach (NumericRangeResult range in ranges)
{

WriteLine($"{range.From,4} to {range.To,4} ({range.Count}) Avg: {range.Mean,4:#}");

ITypeSearch<Book> books = client.Search<Book>()
.RangeFacetFor(book => book.PageCount, pageCountRanges);

Numeric and date ranges

are inclusive for the lower

bound and exclusive for

the upper bound. That is,

a range from 300 to 750

matches 300 but not 750.

Range facets group documents based on ranges into which a numeric or DateTime field falls. Unlike

histogram facets, the ranges need not be an interval, such as 0-10, 10-20. Instead, they can be different sizes

and overlap each other, such as 0-10, 5-20.

https://world.episerver.com/documentation/developer-guides/find/NET-Client-API/searching/Facets/Range-

facets/

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 228

EpiserverEpiserver

Exercise G2

Exploring Episerver Find APIs in a Console
Application

Estimated time: 30 minutes

Prerequisites: complete the first two tasks in

Exercise G1 – Implementing Episerver Find:

Registering a Find account, and Creating a

developer index.

In this exercise, you will build a console

application to explore some Find APIs.

Customizing and Extending Episerver Content Cloud

Page 229

Copyright © 2020 Episerver. All rights reserved.

Episerver

Module H

Integrating Episerver
Community API

Customizing and Extending Episerver Content Cloud

In this module, you will learn about the Episerver Community API
(formerly Episerver Social) cloud service and add-on that

developers can use to combine micro-services into advanced,
flexible social functions and user-generated content.

Customizing and Extending Episerver Content Cloud

Page 230

Copyright © 2020 Episerver. All rights reserved.

Episerver

Module agenda

• Understanding Episerver Community API

• Understanding common patterns

• Understanding the microservices

• Combining the microservices

• Exercise H1 – Exploring the SocialAlloy reference site

Module H – Integrating Episerver Community API

Apply for a free Episerver Community API trial account:
http://demo.social.episerver.net/

GDPR guidelines for Episerver Community API
https://world.episerver.com/documentation/developer-guides/gdpr-guidelines/the-episerver-platform-and-gdpr/episerver-social/

Customizing and Extending Episerver Content Cloud

Page 231

Copyright © 2020 Episerver. All rights reserved.

Episerver

Episerver Community API

User-generated content drives engagement and conversions, and is the most effective way to increase

credibility and loyalty with your customers. Episerver Community API is the high-performance micro-

service that lets you store, manage, moderate and deliver ratings, reviews, comments and groups.

Built on a Data Storage Cluster and Microsoft Azure Service Fabric for massive performant scalability.

Understanding Episerver Community API

Comments Moderation Ratings Activities Groups

http://www.episerver.com/services/cloud-service/episerver-social/

Do not confuse Episerver Community API with:

• Episerver Social Reach: push messages to Facebook, Twitter, etc.

• Episerver UGC: integrate with external social content.

Episerver Community API PaaS for developers

Episerver Community API platform is a collection of extensible micro-services for defining and collecting user

community generated content.

• Comments - manage and deliver hierarchical, user-generated content

• Ratings - allow users to quantify the value of your content and products

• Groups - aggregate users and content to build digital communities

• Moderation - review and control user contributions

• Activity Streams - broadcast your audience's engagement with your application

Episerver Community API Developer Guide
http://world.episerver.com/documentation/developer-guides/social/

Video (64 minutes): http://fast.wistia.net/embed/iframe/b7x5k8odd4?videoFoam=true

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 233

Episerver

Episerver SocialAlloy

SocialAlloy is a clone of the Alloy (MVC) sample application, enhanced with components demonstrating

Episerver Community API:

• To provide a simple application demonstrating Episerver Community API features and capabilities

• To provide developers looking to get started with Episerver Community API with a helpful point of

reference

What’s inside?

• Blocks for social features, for example, CommentsBlock, RatingBlock, LikeButtonBlock, etc.

• CommunityPage: shows examples of: comments, ratings, subscriptions, activities, moderation, etc.

• Moderation user interface

https://github.com/episerver/SocialAlloy

Understanding Episerver Community API

Customizing and Extending Episerver Content Cloud

Page 234

Copyright © 2020 Episerver. All rights reserved.

To configure Episerver Community API, copy and paste from the email you were sent for your

account:

It is essential that the server hosting your application maintains accurate time. When the server time is

inaccurate, requests are created with inaccurate timestamps. As a result, these requests may be rejected as

unauthentic.

Episerver

Episerver Community API package installation

To integrate Episerver Community API with an Episerver CMS website project, enter the following

commands in the Package Manager Console for the features that you want to use:

Understanding Episerver Community API

Install-Package EPiServer.Social.Comments.Site -ProjectName AlloyAdvanced

Install-Package EPiServer.Social.Ratings.Site -ProjectName AlloyAdvanced

Install-Package EPiServer.Social.Moderation.Site -ProjectName AlloyAdvanced

Install-Package EPiServer.Social.Groups.Site -ProjectName AlloyAdvanced

Install-Package EPiServer.Social.ActivityStreams.Site -ProjectName AlloyAdvanced

Customizing and Extending Episerver Content Cloud

Page 235

Copyright © 2020 Episerver. All rights reserved.

<episerver.social>
<settings timeout="100000"/>
<authentication appId="your-application-id" secret="your-application-secret"/>
<endpoints>

<add name="Comments" value="https://..." />
<add name="Ratings" value="https://..." />
<add name="Moderation" value="https://..." />
<add name="ActivityStreams" value="https://..." />
<add name="Groups" value="https://..." />

</endpoints>
</episerver.social>

Your application’s appId and secret are private to your application. This information should

not be committed to a source control repository or otherwise publicly exposed.

Episerver Community API exceptions

Common exceptions thrown include:

• SocialAuthenticationException: misconfiguration, server time out-of-sync, and so on.

• MaximumDataSizeExceededException: if social content is more than 10 kilobytes in size.

• RateLimitExceededException: if you issue too many requests over a short period of time.

• SocialCommunicationException: if an application cannot connect or communicate with Episerver

Community API platform cloud services.

• SocialException: unexpected errors.

The individual services may also throw exceptions that are unique to the feature that they implement.

Episerver

Getting Episerver Community API services

Each service implements an interface:

• ICommentService, IRatingService, and so on

To get an instance inside an Episerver website, use dependency injection, for example:

There are common exceptions that you should catch when working with the microservices. For

example, MaximumDataSizeExceededException is thrown if content is more than 10 kilobytes in size.

Understanding common patterns

private readonly ICommentService commentService;

public StartPageController(ICommentService commentService)
{

this.commentService = commentService;

Customizing and Extending Episerver Content Cloud

Page 237

Copyright © 2020 Episerver. All rights reserved.

Episerver

Understanding IDs and references

Properties that end in Id are used to identify the entities of an Episerver Community API feature.

• The values are internally-generated and used to distinguish individual entities within the system.

• The classes are CommentId, GroupId, and so on.

Properties that end in Reference are for users or resources outside the Episerver Community API

platform, including content in Episerver CMS and Commerce.

• The value is defined by the developer.

• A URI or similar namespace scheme provides an ideal template for a reference. The following is an

example of a reference scheme that might be applied to Episerver Commerce content:

Understanding common patterns

resource://episerver/commerce/{product-identifier}/{variant-identifier}

Customizing and Extending Episerver Content Cloud

Page 238

Copyright © 2020 Episerver. All rights reserved.

Episerver Community API criteria for retrieving result sets

These services accept criteria that dictate how to retrieve a result set. A class named Criteria<TFilter>

encapsulates the specifications necessary to retrieve a collection of results from one of the platform services.

Criteria: http://world.episerver.com/documentation/developer-guides/social/social_platform-

overview/discovering-the-platform/#criteria

Episerver

Understanding composites

All Episerver Community API features distil social concepts to their essence and allow its native entities

to be composed with custom data models for extensibility.

Extension data is a .NET class, defined within your application, intended to capture additional details

necessary to shape a platform entity to meet your application's needs.

The platform's services encapsulate the relationship between their entities and extension data with the

Composite class. Composite represents a simple pairing, an instance of a native platform entity and its

associated extension data.

Extending comments with composites

http://world.episerver.com/documentation/developer-guides/social/comments/extending-comments-with-composites/

Understanding common patterns

Customizing and Extending Episerver Content Cloud

Page 239

Copyright © 2020 Episerver. All rights reserved.

Episerver

Comments

Comments are hierarchical in nature, so share relationships with

resources and other comments.

A comment has a parental relationship. The parent of a comment

is the entity to which the comment applies. That entity may be a

resource, such as content or a product, or another comment.

Managing comments

http://world.episerver.com/documentation/developer-

guides/social/comments/managing-comments/

User-generated content for ecommerce: reviews and beyond

http://www.episerver.com/learn/resources/blog/adam-blomberg/user-generated-

content-for-ecommerce-reviews-and-beyond/

Understanding the microservices

Customizing and Extending Episerver Content Cloud

Page 241

Copyright © 2020 Episerver. All rights reserved.

Episerver

Ratings

Understanding the microservices

Ratings let users quantify the value of

content, products, and other application resources.

You, as a developer, can design features that enable users to

provide quantifiable feedback that can be tallied and calculated,

producing meaningful measures to appraise that content.

The value of a rating is represented as a simple integer value. The value's significance is defined in

your application.

• A simple 5-star scale might be represented by values 1-5

• A 5-star scale, allowing half-star ratings, might be represented by values 1-10

• A percentage-based scale might be represented by values 1-100

Managing ratings http://world.episerver.com/documentation/developer-guides/social/ratings-intro/managing-ratings/

Customizing and Extending Episerver Content Cloud

Page 242

Copyright © 2020 Episerver. All rights reserved.

Episerver

Groups: roles, associations,
and membership

Groups can:

• Have a Name, Description, and

when it was Created

• Have many members

• Have many associations with

resources e.g. content

Members can:

• Reference one user e.g. Alice

• Belong to one group

• Belong to many roles e.g. Forum

Moderator

Understanding the microservices

A

A

B

B

C

C

D

D

Groups allow you to combine users and content to create digital communities.

• Roles provide a means of labelling or categorizing members within your digital community.

They are defined, within your application, as you see fit. They may be assigned to members

of a group or span multiple groups. Roles do not bestow any particular permission, status, or

responsibility. This leaves your application free to apply meaning to roles as appropriate.

• You associate resources with a group by adding them as an association.

• Users are associated with a group by adding them as a member.

Managing groups, roles, associations, and membership
http://world.episerver.com/documentation/developer-guides/social/groups/managing-roles/

http://world.episerver.com/documentation/developer-guides/social/groups/groups-content-associations/

http://world.episerver.com/documentation/developer-guides/social/groups/groups-membership/

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 243

A workflow is comprised of:

• A set of states. For example: "Pending", "In Review", "Rejected", "Published".

• Actions. For example: "Accept", "Ignore", "Reject", "Publish".

• Transitions, the combination of two states (origin and destination) and an action, which causes the

transition to occur. For example, an item's state is "Pending" (origin state), a reviewer accepts the request

(action), changing its state to "In Review" (destination state).

Episerver

Moderation

Moderation is a business process by which resources and actions

may be reviewed for suitability within an application.

• Resources may exist within or outside of the social platform.

So, the feature lets you moderate custom resources, such as

comments, ratings, profile images, and products.

• Actions represent an activity or request within your application, such as a request to join an

exclusive group or publish a comment.

As you plan a moderation strategy, it is important to consider:

• What you intend to moderate (a resource, an action, or a custom entity)

• The steps or process required to moderate it

• How to represent entities being moderated

http://world.episerver.com/documentation/developer-guides/social/moderation-intro/

Understanding the microservices

Customizing and Extending Episerver Content Cloud

Page 244

Copyright © 2020 Episerver. All rights reserved.

Episerver

Activity Streams

Understanding the microservices

Activity Streams allows developers to:

• Manage subscriptions to resources

and other users

• Define and broadcast activities

• Filter and retrieve a feed of information about activities occurring in the application

• React to those activities

A user may subscribe to resources or other users within your application. When that occurs, the system

generates a record of activities related to those resources and users. That information can

subsequently be filtered and retrieved in the form of a feed.

Activity Streams: subscriptions, feeds, activities

http://world.episerver.com/documentation/developer-guides/social/activity-streams-introduction/

Customizing and Extending Episerver Content Cloud

Page 245

Copyright © 2020 Episerver. All rights reserved.

Episerver

Implementing forums

Episerver World has forums,

for example, Developer

Forums, including one for

Feature requests.

Note that members can:

1. Reply to a post.

2. Subscribe to a post.

3. Report a post.

4. Members of the forum

have a picture, name,

and various badges.

Combining the microservices

1 2 3

4

To implement forum functionality on your website similar to Episerver’s, you could combine all

Episerver Community API’s micro-services:

Comments: hierarchy of posts and replies.

Ratings: combine with post or reply to create a “report”. If more than one member reports a post,

perhaps it is temporarily hidden and flagged for forum administrator review.

Groups: use groups for Members and Moderators. Members could have extended data like

badges for Episerver Certified Developers, and Episerver employees using Episerver Community

API composites.

Moderation: use to determine membership of forums, and special badges to show.

Activity Streams: allow members to see posting activity so they can get answers to their

questions ASAP.

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 247

The review list is:

• Sortable, Filterable, Searchable

Each review has:

• Rating and Title

• Author and Date

• Verified purchase

• Comment (and ability to

respond)

• Ability to rate the review as

helpful and report abuse

Episerver

Implementing product reviews

Combining the microservices

Customizing and Extending Episerver Content Cloud

Page 248

Copyright © 2020 Episerver. All rights reserved.

To implement functionality on your website similar to Amazon’s, you could combine all Episerver

Community API’s micro-services:

• Comments: hierarchy of reviews and responses.

• Ratings: combine with comment to create a “review”, or individual rating without review

text; use built-in aggregation feature to show summary.

• Groups: use groups for VerifiedPurchaser and Author. Authors can have extended data like

Biography using Episerver Community API composites.

• Moderation: use workflow to determine membership of VerifiedPurchaser and Author

groups.

• Activity Streams: allow authors to see reviewing activity so they can respond ASAP, and

allow customers to follow the author.

Episerver

Implementing author pages

Authors can register with Amazon

and once they are confirmed as

the author of a book (or two), they

can manage their own page.

• Customers can follow the

author to be notified of new

publications.

• Authors can write a biography,

and manage their list of books.

Combining the microservices

Customizing and Extending Episerver Content Cloud

Page 249

Copyright © 2020 Episerver. All rights reserved.

EpiserverEpiserver

Exercise H1

Exploring the SocialAlloy demo site

Estimated time: 30 minutes

Prerequisites: an Episerver Community API

account.

• Apply for a free Episerver Community API trial

account:
http://demo.social.episerver.net/

• Download SocialAlloy website project from

Episerver’s GitHub repository:
https://github.com/episerver/SocialAlloy

Customizing and Extending Episerver Content Cloud

Page 250

Copyright © 2020 Episerver. All rights reserved.

Episerver

Course Summary

Customizing and Extending Episerver Content Cloud

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 251

Episerver

What did you learn?

• Introduction

• Module A: Reviewing Episerver CMS Fundamentals

• Module B: Working with Content using APIs

• Module C: Integrating Data

• Module D: Customizing the Experience for Editors

• Module E: Customizing the Experience for Visitors

• Module F: Extending with Plug-ins and Add-ons

• Module G: Implementing Episerver Search & Navigation

• Module H: Integrating Episerver Community API

• Course Summary

Customizing and Extending Episerver Content Cloud

Module A: Reviewing Episerver CMS Fundamentals
In this module, you will review topics you should already know.

Module B: Working with Content using APIs
In this module, you will learn about some advanced APIs including working with Content Approvals, Projects,

and Notifications.

Module C: Integrating Data
In this module, you will learn about various technologies and techniques for integrating non-content data,

including gathering visitor data with Forms and integrating external data systems with partial routers and

Service API.

Module D: Customizing the Experience for Editors
In this module, you will learn how to customize the editors experience when setting content properties.

Module E: Customizing the Experience for Visitors
In this module, you will learn how to take control of the visitors experience with custom rendering,

personalization with visitor groups, and advanced customization of Episerver Search,.

Module F: Extending with Plug-ins and Add-ons
In this module, you will learn how to extend Episerver with custom plug-ins, gadgets, and add-ons.

Module G: Implementing Episerver Search & Navigation
In this module, you will learn how to integrate Episerver CMS with Episerver Find to implement advanced

search capabilities.

Module H: Integrating Episerver Community API
In this module, you will learn how to integrate Episerver CMS with Episerver Community API to implement

advanced features like comments, ratings, and managing groups.

Customizing and Extending Episerver Content Cloud

Copyright © 2020 Episerver. All rights reserved.

Page 252

Episerver

Thank you!

Please complete the optional evaluation
at the end of each eLearning course.

We do read all comments and use them
to improve our courses.

Copyright © 2020 Episerver. All rights reserved.

Page 254

Customizing and Extending Episerver Content Cloud

